Part I: Overview

Core concepts presented:

- What is network monitoring
- What is network management
- Getting started
- Why network management
- Attack detection
- Consolidating the data
- The big picture

What is network monitoring?

Anyone have some ideas?

Monitoring an active communications network in order to diagnose problems and gather statistics for administration and fine tuning.

WikipediA

The term **network monitoring** describes the use of a system that constantly monitors a computer network for slow or failing components and that notifies the network administrator in case of outages via email, pager or other alarms. It is a subset of the functions involved in network management.

What is network management?

Refers to the broad subject of managing computer networks. There exists a wide variety of software and hardware products that help network system administrators manage a network. Network management covers a wide area, including:

- Security: Ensuring that the network is protected from unauthorized users.
- **Performance:** Eliminating bottlenecks in the network.
- **Reliability:** Making sure the <u>network</u> is available to users and responding to hardware and software

malfunctions.

What is network management?

- System & Service monitoring
 - Reachability, availability
- Resource measurement/monitoring
 - Capacity planning, availability
- Performance monitoring (RTT, throughput)
- Statistics & Accounting/Metering
- Fault Management (Intrusion Detection)
 - Fault detection, troubleshooting, and tracking
 - Ticketing systems, help desk
- Change management and configuration monitoring

Getting started

Make sure that the network is up and running. Thus, we need to monitor it:

- Deliver projected SLAs (Service Level Agreements)
- Depends on policy
 - → What does your management expect?
 - → What do your users expect?
 - → What do your customers expect?
 - → What does the rest of the Internet expect?
- Is 24x7 good enough?

 $\scriptstyle \rightarrow$ There's no such thing as 100% uptime (as we'll see) \rightarrow

Getting started: "Uptime"

What does it take to deliver 99.9 % uptime?

30.5 x 24 = 762 hours a month

 $(762 - (762 \times .999)) \times 60 = 45$ minutes

only 45 minutes of downtime a month!

Need to shutdown 1 hour / week?

 $(762 - 4) / 762 \times 100 = 99.4 \%$

Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA

How is availability measured?

In the core? End-to-end? From the Internet?

Getting started: Baselining

What is normal for your network?

- If you've never measured or monitored your network you need to know things like:
 - Load on links
 - Jitter between endpoints
 - Percent usage of resources
 - Amount of "noise":
 - Network scans
 - Dropped data
 - Reported errors or failures

Why network management?

Know when to upgrade

- Is your bandwidth usage too high?
- Where is your traffic going?
- Do you need to get a faster line, or more providers?
- Is the equipment too old?

Keep an audit trace of changes

- Record all changes
- Makes it easier to find cause of problems due to upgrades and configuration changes

Keep a history of your network operations

- Using a ticket system let you keep a history of events.
- Allows you to defend yourself and verify what happened

Why network management?

Accounting

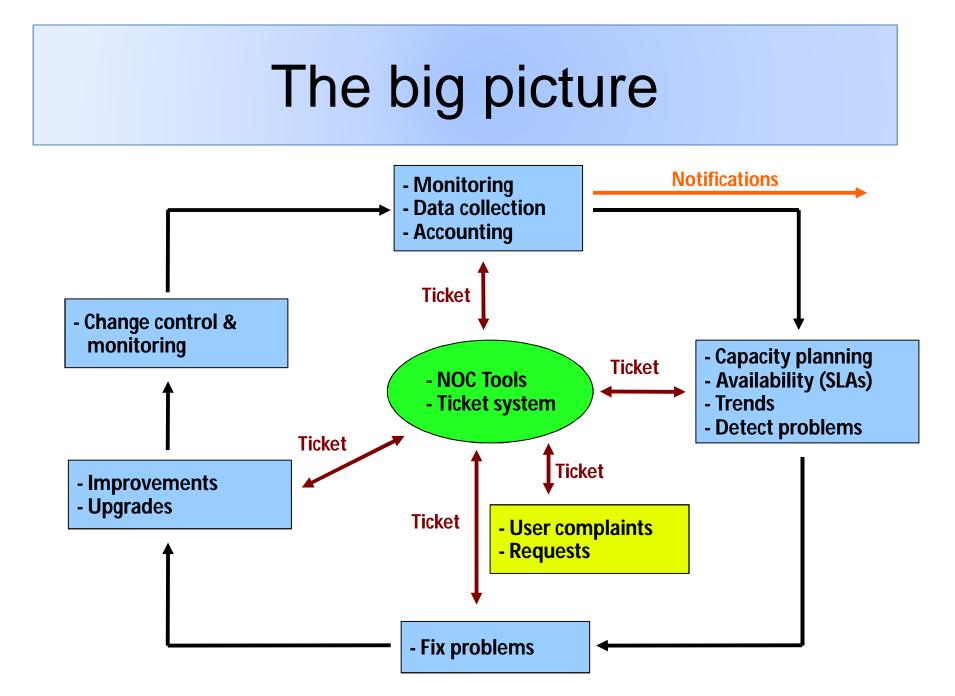
- Track usage of resources
- Bill customers according to usage

Know when you have problems

- Stay ahead of your users! Makes you look good.
- Monitoring software can generate tickets and automatically notify staff of issues.

Trends

- All of this information can be used to view trends across your network.
- This is part of baselining, capacity planning and attack detection.


Attack Detection

- Trends and automation allow you to know when you are under attack.
- The tools in use can help you to mitigate attacks:
 - Flows across network interfaces
 - Load on specific servers and/or services
 - Multiple service failures

Consolidating the data

The Network Operations Center (NOC) "Where it all happens"

- Coordination of tasks
- Status of network and services
- Fielding of network-related incidents and complaints
- Where the tools reside ("NOC server")
- Documentation including:
 - → Network diagrams
 - → database/flat file of each port on each switch
 - Network description
 - → Much more as you'll see a bit later.

A few Open Source solutions...

Performance

Cricket

- IFPFM
- flowc
- mrtg
- netflow
- NfSen
- ntop
- pmacct
- rrdtool
- SmokePing
 SNMP/Perl/ping
- Ticketing

Change Mgmt

- Mercurial
- Rancid (routers)
- RCS
- Subversion

Security/NIDS

- Nessus
- OSSEC
- Prelude
- Samhain
- SNORT
- RT, Trac, RedmineUntangle

Net Management

- Big Brother
- Big Sister
- Cacti
- Hyperic
- Munin
- Nagios*
- Netdisco
- Netdot
- OpenNMS
- Sysmon
- Zabbix