
4. Design of Multistage Amplifiers

- 4.1 <u>Multistage RC Coupled Amplifiers</u>
- 4.2 FET-BJT 2-stage RC Coupled Amplifiers
- 4.3 FET-BJT 3-stage RC Coupled Amplifiers

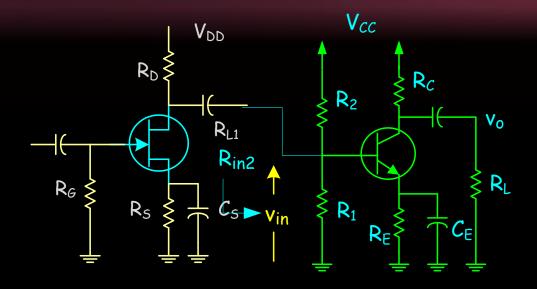
4.1 Multistage RC Coupled Amplifiers

Cascaded Multistage Amplifiers

Note that in multistage amplifiers, (a) V_O of the preceding stage becomes V_{in} of the following stage, example V_{O1} = V_{in2} , (b) R_{in} of the following stage becomes R_L of the preceding stage, example R_{L1} = R_{in2} , (c) Overall gain is the product of gain of every stage. So the design depends upon the available data between stages. For example, without knowing R_{in2} of the second stage, design is not possible to meet the voltage gain of the first stage.

4.2 FET-BJT 2-stage RC Coupled Amplifiers

Design Example


Draw the circuit and design the following 2-stage RC coupled amplifier. First stage is a JFET self-bias CS amplifier circuit. Design the parameters of the JFET(I_{GSS} , I_{DSS} and V_P) and V_{DD} for required R_G =20M Ω , A_v = -12 and R_D = R_{L1} = R_{in2} =2k Ω . Assume V_D = V_{DD} /2=10V

The above FET amplifier is RC coupled to a second stage (CE) amplifier circuit whose specifications are: β = 200, V_{CC} = 10V, optimum output voltage design, R_C = R_L = $2k\Omega$, R_E = 0.4 $k\Omega$, Design bias resistances R_1 and R_2 .

Overall performance

- # What is the total voltage gain from the input of the first stage to the output of the second stage?
- # Find undistorted output voltage swing at second stage output and # The possible maximum input voltage at the first stage.

Draw Circuit to be designed

Self Bias CS Amp. $R_G = 20M\Omega$, $A_v = -12$ and R_D = R_{L1} = R_{in2} = $2k\Omega$. Assume R_C = R_L = $2k\Omega$, R_E = $0.4k\Omega$ $V_{D} = V_{DD} / 2 = 10V$

CE Amp. $\beta = 200$, $V_{CC} = 10V$, optimum output voltage design, Because R_{L1} = R_{in2} = $2k\Omega$ is available, design is possible for the first stage voltage gain and also design of R_{B2} of the second stage. Therefore the design can start with the first FET stage as follows;

Given; CS Amp. $R_G=20M\Omega$, $A_v=-12$ and $R_D=R_{L1}=R_{in2}=2k\Omega$. Assume $V_D=V_{DD}/2=10V$

$$A_{V} = -g_{m}(R_{D} / / R_{L}) = -12 \Rightarrow -g_{m} = \frac{-12}{2k / / 2k} = 12mS$$

$$Opt. \ g_{m} = 12mS = 1.42 \frac{I_{DSS}}{|V_{p}|} \Rightarrow (1)$$

$$Opt. \ V_{GS} = 0.3 |V_{p}| = I_{DRS} = \frac{I_{DSS}}{2} R_{S} \Rightarrow |V_{p}| = \frac{I_{DSS}}{0.6} R_{S} \Rightarrow (2)$$

$$Take \ V_{p} \ from \ (2) \ and \ put \ it \ in \ (1),$$

$$12 = 1.42 \frac{I_{DSS}}{I_{DSS}} = \frac{1.42 \times 0.6}{R_{S}} \Rightarrow R_{S} = \frac{1.42 \times 0.6}{12} k = \underbrace{0.071k}$$

$$V_{DD} - I_{D}R_{D} = V_{D} = 10V = \frac{V_{DD}}{2} \Rightarrow V_{DD} = \underbrace{20V} \therefore I_{D} = \frac{V_{D}}{R_{D}} = \underbrace{\frac{10}{2k}} = 5mA \Rightarrow I_{DSS} = 2I_{D} = \underbrace{10mA}$$

$$\therefore V_{GS} = 0.3V_{p} = -I_{D}R_{S} \Rightarrow V_{p} = \frac{-5mA \times 0.071k}{0.3} = -1.83V \approx \underbrace{-2V}$$

$$R_{G} = 20M = \underbrace{\frac{0.1|V_{p}|}{I_{GSS}}} \Rightarrow I_{GSS} = \underbrace{\frac{0.1|V_{p}|}{20M}} = \underbrace{\frac{0.1 \times 2V}{20M}} = \underbrace{\frac{10nA}{20M}} = \underbrace{\frac{10nA}{20M$$

EE3601-04
Electronics Circuit Design

 $I_{DSS} = 10 \text{mA}, V_p = -2 \text{V}$

Because R_{in2} = 2k Ω is available, design is possible for the R_{B2} of the second stage. Given; CE Amp. β = 200, V_{CC} = 10V, optimum output voltage design, R_C = R_L = 2k Ω , R_E = 0.4k Ω

$$I_C = \frac{V_{CC}}{R_{ac} + R_{dc}} = \frac{10}{1k + 2.4k} = 2.94mA$$

$$r_e = \frac{26}{I_C} = \frac{26}{2.94} = 8.84\Omega \Rightarrow \beta r_e = 200 \times 8.84 = 1768\Omega$$

$$\therefore R_B //\beta r_e = R_B //1768\Omega = R_{i \, n2} = 2000\Omega \Rightarrow R_B = \frac{1768 \times 1500}{2000 - 1768} = 15.24k$$

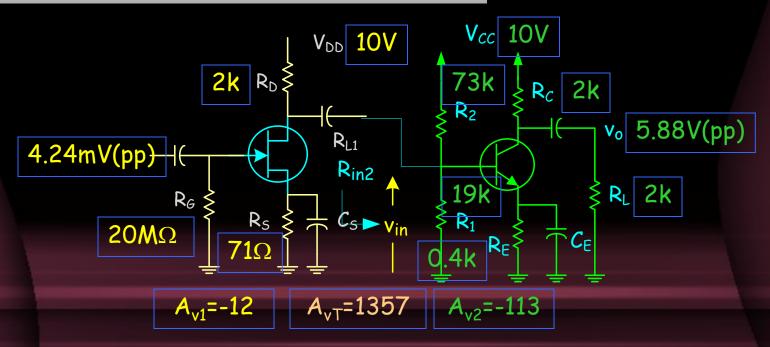
$$V_{BB} = I_{B}R_{B} + 0.7 + I_{C}R_{E} = I_{C}\left(R_{E} + \frac{R_{B}}{\beta}\right) + 0.7 = 2.94\left(0.4 + \frac{15.24}{200}\right) + 0.7 = 2.1V$$

$$R_{1} = \frac{R_{B}}{1 - \left(\frac{V_{BB}}{V_{CC}}\right)} = \frac{15.24}{1 - \left(\frac{2.1}{10}\right)} = 19.29k$$

$$R_{2} = R_{B} \frac{V_{CC}}{V_{BB}} = \frac{15.24 \times 10}{2.1} = 72.57k$$

Designed $R_1 = 19.25 k\Omega$, $R_2 = 72.57 k\Omega$ $I_C = 2.94 mA$

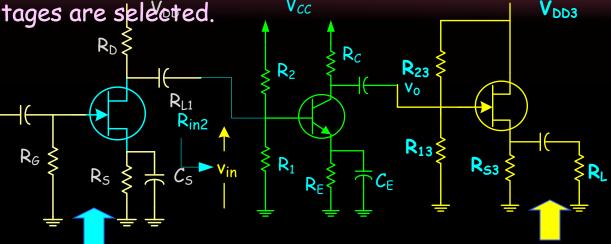
Overall performance


What is the total voltage gain from the input of the first stage to the output of the second stage?

Find undistorted output voltage swing at second stage output and # The possible maximum input voltage at the first stage.

$$A_{v2} = \frac{-R_C //R_L}{r_e} = \frac{-1000}{8.84} = -113.12$$

$$A_{v1} = -12 \Rightarrow \# A_{vT} = -12 \times (-113.12) = \underbrace{1357.44}_{v_02} \quad v_{o2}(pp) = 2I_{C2}R_{ac} = 2 \times 2.94mA \times 1k = 5.88V$$


Maxmum
$$v_{in1}(pp) = \frac{V_{o2}(pp)}{A_{vT}} = \frac{5.8V}{1357.44} = 0.00424V = 4.24mV$$

FET-BJT-FET 3-stage- RC Coupled Amplifiers

To design an amplifier having (a) very high R_{in} & (b) very high voltage gain & (c) very large signal output voltage swing driving a very low load resistance,

following stages are selected.

Self bias CS Amp. To provide very high Rin but small signal V_o since it is a preamplifier stage Take $A_V = -12$

SF Amp. To provide high R_{in3} and Voltage divider bias to provide large output voltage swing to drive $R_{53} = R_1 = 1000\Omega$

CE Amp. For high A, Take $R_c = 2k\Omega R_{in3} = 20k\Omega$ For maximum voltage transfer from 2nd stage to 3rd stage **EE3601-04 Electronics Circuit Design**

Draw and Design R_G , R_S , $R_D = R_L$ and V_{DD} of the first stage JFET self-bias CS amplifier circuit. FET data is given as I_{GSS} =300nA, I_{DSS} =5mA and V_P =-3V, The required specification is $V_D = V_{DD}/2$ and $A_V = -12$

$$R_{G} = \frac{0.1V_{p}}{I_{GSS}} = \frac{0.3}{300nA} = \underline{1M\Omega}$$

$$Qpt. gm = 1.42 \frac{I_{DSS}}{|V_{p}|} = 1.42 \frac{5mA}{3} = 2.367(mA/V)$$

$$A_{V} = -g_{m}(R_{D}//R_{L}) = -12 \Rightarrow R_{D} = R_{L} = 2 \frac{12}{2.367} k = \underline{10.13k\Omega}$$

$$Qpt. I_{D} = (I_{DSS}/2) = (5mA/2) = 2.5mA$$

$$Qpt. V_{GS} = 0.3V_{p} = 0.3 \times (-3) = -0.9V$$

$$\therefore V_{GS} = -0.9V = -I_{D}R_{S} \Rightarrow R_{S} = \frac{0.9}{2.5mA} = 0.36k = 360\Omega$$

$$V_{DD} - V_{D} = I_{D}R_{D} \Rightarrow \frac{V_{DD}}{2} = 2.5mA \times 10.13k$$

$$\therefore V_{DD} = \underline{50.65V}$$

Draw and design second stage (CE) amplifier circuit Given specifications are: β = 200, V_{CC} = 10V, R_{C} = 2 k Ω , R_{L} = 20 k Ω , R_{E} = 0.4k Ω , R_{in} = 10.3k Ω . Design bias resistances R_{1} and R_{2} ,

find voltage gain, and undistorted output voltage swing of this stage.

$$\begin{split} R_{ac} &= R_{C} / / R_{in3} = 2k / / 20k = 1.8k \\ I_{C} &= \frac{V_{CC}}{R_{ac} + R_{dc}} = \frac{10}{1.8k + 2.4k} = 2.38 \text{mA} \\ R_{e} &= \frac{26}{I_{C}} = \frac{26}{2.38} = 10.92 \Omega \Rightarrow \beta r_{e} = 200 \times 10.92 = 2.184 \text{k} \Omega \\ \therefore R_{B} / / \beta r_{e} &= R_{B} / / 2.184 \text{k} \Omega = R_{in} = 10.3 \text{k} \Omega \Rightarrow R_{B} = \frac{10.3 \times 2.184}{10.3 - 2.184} = 2.77 \text{k} \\ V_{BB} &= I_{B} R_{B} + 0.7 + I_{C} R_{E} = I_{C} \left(R_{E} + \frac{R_{B}}{\beta} \right) + 0.7 \\ &= 2.38 \left(0.4 + \frac{2.77}{200} \right) + 0.7 = 1.68 \text{V} \\ R_{12} &= \frac{R_{B}}{1 - \left(\frac{V_{BB}}{V_{CC}} \right)} = \frac{2.77 \text{k}}{1 - \left(\frac{1.68}{10} \right)} = 3.33 \text{k} \\ R_{22} &= R_{B} \frac{V_{CC}}{V_{BB}} = \frac{2.77 \text{k} \times 10}{1.68} = 16.49 \text{k} \\ V_{o2} (pp) &= 2I_{C} R_{ac} = 2 \times 2.38 \text{mA} \times 1.8 \text{k} = 8.57 \text{V} \\ R_{V2} &= \frac{-R_{C} / / R_{L}}{r_{e}} = \frac{-1800}{10.92} = -164.8 \end{split}$$

Draw and design R_{13} , R_{23} , and V_{DD3} of the third stage JFET voltage-divider bias SF amplifier circuit if the FET data is $I_{GSS}\!=\!1\mu A$, $I_{DSS}\!=\!10mA$ and $V_{P}\!=\!-3V$, The required specification is $V_{S}\!=\!V_{DD}/2$ to drive a load of R_{S} = R_{L} 1k Ω # Find R_{o} of your amplifier and # maximum input voltage at the first stage.

$$R_{in3} = R_{13} / / R_{23} = 20k = R_G < \frac{0.1 V_p}{I_{GSS}} = \frac{0.3}{1 \mu A} = 0.3M = \frac{300 k \Omega}{1 \mu A}$$

$$Opt. I_D = (10 \text{mA} / 2) = 5 \text{mA} \Leftrightarrow Opt. V_{GS} = 0.3 \times (-3) = -0.9V$$

$$Opt. gm = 1.42 \frac{I_{DSS}}{|V_p|} = 1.42 \frac{10 \text{mA}}{3} = 4.734 \text{(mA} / V)$$

$$I_{D3}R_S = \frac{V_{DD3}}{2} = 5 \text{mA} \times 1k = 5V \Rightarrow V_{DD} = 2 \times 5 = 10V$$

$$V_{B13} = \frac{R_G}{1 - \frac{V_{GG}}{V_{DD}}} = \frac{20k}{1 - \frac{4.1}{10}} = 33.9 k \Omega$$

$$R_{23} = R_G \frac{V_{DD}}{V_{GG}} = 20k \frac{10}{4.1} = 48.8 k \Omega$$

$$R_{13} = \frac{R_{23}}{1 - \frac{4.734 (R_S / / R_L)}{1 + 4.734 \times (R_S / / R_L)} = \frac{4.734 \text{mA} \times 1k}{1 + 4.734 \text{mA} \times 1k} = 0.825$$

$$A_{VT} = (-12)(-164)(0.825) = 1623.6$$

$$R_{13} = \frac{5}{1623.6} = 0.003V = 3 \text{mV}$$

$$V_{in1}(pp) = \frac{5}{A_{VT}} = \frac{5}{1623.6} = 0.003V = 3 \text{mV}$$

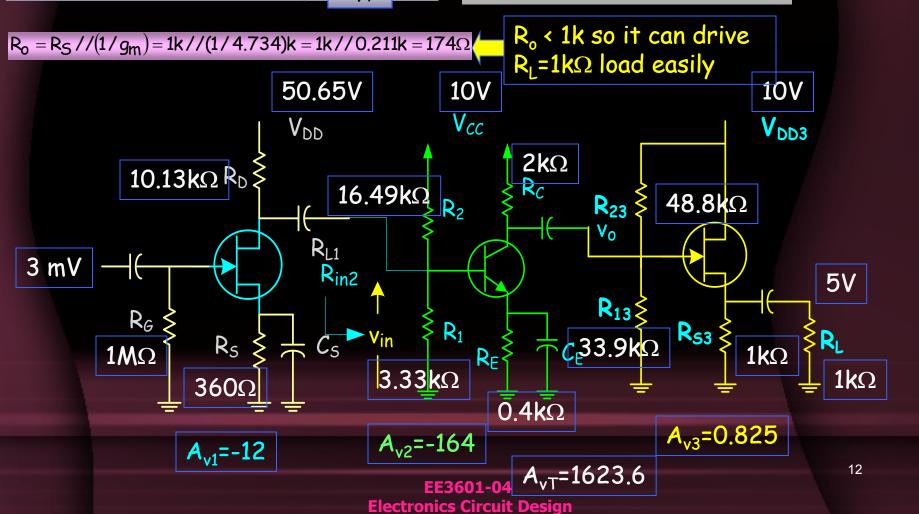
$$V_{in1}(pp) = \frac{5}{A_{VT}} = \frac{5}{1623.6} = 0.003V = 3 \text{mV}$$

$$V_{in1}(pp) = \frac{5}{A_{VT}} = \frac{5}{1623.6} = 0.003V = 3 \text{mV}$$

 $R_1 = 1k\Omega$ load easily

Overall performance

Find A_{vT} of your amplifier and # maximum input voltage at the first stage and # check R_o whether it can drive $R_L=1k\Omega$ load easily.


$$A_{V3} = \frac{4.734(R_{S} //R_{L})}{1 + 4.734 \times (R_{S} //R_{L})} = \frac{4.734 \text{mA} \times 1 \text{k}}{1 + 4.734 \text{mA} \times 1 \text{k}} = 0.825$$

$$A_{V}T = (-12)(-164)(0.825) = 1623.6$$

$$V_{03} = 2I_{D3}R_{ac3} = 2 \times 5mA \times 0.5k = 5V$$

$$V_{in1}(pp) = \frac{5}{A_{vT}} = \frac{5}{1623.6} = 0.003V = 3mV$$

$$V_{in1}(pp)$$

