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SECTION C :  
TIME DOMAIN ANALYSIS 

Topic Covered :Typical test signals, time response of first order systems to 
various standard inputs, time response of 2nd order system to step input, 
relationship between location of roots of characteristics equation, w and wn, time 
domain specifications of a general and an under-damped 2nd order system, 
steady state error and error constants, dominant closed loop poles, concept of 
stability, pole zero configuration and stability, necessary and sufficient conditions 
for stability, Hurwitz stability criterion, Routh stability criterion and relative 
stability. 



INTRODUCTION 
• The time response of the ‘system’ is the 

output of the closed loop system as a function 
of time. 

• The time response of a control system refers 
to control system behaviour over the time for 
a specified input test signal. The time esponse 
of a control system is made up of two parts: 

1. Transient response 

2. Steady-state response 



TEST INPUT SIGNALS 

1. Impulse Function: (Dirac Delta Signal) 

 





2. Step Signal 



3. Ramp Function 



Example. Electrical first-order system 
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Taking the Laplace transform of the equation with zero initial condition yields  
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where the time constant is T=RC. 



where f(t) is the force, v is the velocity, and kv denotes the force of air resistance which 
is proportional to the velocity.   

Example. A simplified mathematical model of a missile in linear motion can be 
described by a first-order system: 
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Taking the Laplace transform of the equation with zero initial condition yields  
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2. Unit-Step Response of First-order 
Systems 
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from which, we obtain the time response 
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Example. The response of a temperature sensor known as a thermocouple (TC) can 
be modeled as a first-order system. When the TC is subjected to a rapid 
temperature change, it will take some time to respond. If the response time is slow 
in comparison with the rate of change of the temperature that you are measuring, 
then the TC will not be able to faithfully represent the dynamic response to the 
temperature fluctuations. 
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3. Unit-Ramp response of First-order 
Systems 

If the input is the unit ramp ( ) 1( )r t t t= ×

then 
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Expanding C(s) into partial fractions gives 

Thus, the time-domain response is 
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The error signal e(t) is then  
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The error in following the unit-ramp input is equal to T for sufficiently large t. The 
smaller the time constant T, the smaller the steady-state error. 



Notice that for first-order systems, the steady-state errors are different when input 
signals are unit-step function and unit-ramp function, respectively. For unit-step 
function,    
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while for unit-ramp function, 



4. Unit-Impulse response of First-order 
Systems 
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If the input is a unit-impulse, then 
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Taking the inverse Laplace transform gives 
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Unit-Impulse response                 
Since we have assumed zero initial conditions, 
the output must change instantaneously from  
0 at t=0 to 1/T at t=0+ (why?). 



5. An important property of LTI systems 

It is seen that the responses of first-order systems to the three inputs are given below: 
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which have the following property: 
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On the other hand, notice that for the input signals 
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Conclusion: for unit ramp, step and impulse inputs, the derivative of the output is 
equivalent to the derivative of the input.  

Such a conclusion can be readily extended to higher-order LTI systems with 
respect to unit ramp, step and impulse inputs. In fact, let  
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The left hand side is the derivative of the output and the right hand side is the 
derivative of the input. 



Example: Determine the unit-step response of the following closed-loop system: 
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Solution: The closed-loop transfer function is: 
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Evaluating the partial-fraction coefficients yields 
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Hence, the time response 
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 5-3. Second-order systems 

1. Servo System: A second-order system example 
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Many physical control systems can be described by or approximated to a second-
order differen- tial equation.  

The system consists of a proportional control and load elements (inertia and 
viscous friction elements). Control objective: output position C tracks the desired 
position R.  



The equation for the load elements is   
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where T is the torque produced by K, J  and B are the moment of inertia and 
viscous friction referred to the motor shaft, respectively. Hence,   
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The characteristic equation 
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We can write it in standard form 

where n is undamped natural frequency and , the damping ratio. 



RLC circuit: A second-order system example. 
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Mass-Spring-Damper System:  A second-order system example. 
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The two poles can be expressed as 
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2. The step response of second-order system 

(1) Underdamped case (0<<1): From  

where 

d is called damped frequency. 
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Hence,   

where cos= or tg=12 /. 
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The response oscillatorily decays to one (0<<1) 



In particular, if the damping ratio =0, the response becomes undamped and 
oscillations continue indefinitely:  
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This is why we call n as undamped natural frequency, which is in fact cannot be 
observed  experimentally; what we are able to observe is damped frequency 

21d nw w z= -

which is always lower than n when 0<<1. If  is increased beyond unity, that is, 
 >1, the response becomes overdamped and will not oscillate. 



(2) Critical damped case (=1): The unit-step response 

Taking the inverse Laplace transform of both sides of the above equation yields 
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(3) Overdamped Case ( >1): 

The characteristic equation has two negative real poles: 

where 
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The unit-step response is 

Hence,  
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Furthermore, from 

it can be seen that for overdamped case, the second-order system can be expressed as two 
first-order systems connected in cascade: 
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In particular, if s2 is located very much closer to the j axis than s1, (which means 
s2 << s1), then for an approximate solution we may neglect s1 and the second-order 
system can be reduced to a first-order system: 
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    or overdamped systems. Small values of  (< 
0.4) yield excessive overshoot in the 
transient response, and a system with a large 
value of  ( > 0.8) responds sluggishly.  

 

(1)When 0.40.8, the 
system gets close to 
the final value more 
rapidly than a 
critically damped 
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In particular, when 0.707, the system exhibits fastest response with a nice 
overshoot (=4%).  



c(t) 
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(2)Among the systems without oscillation (1), 
the critical damped system exhibits the 
fastest response. 

(3)An overdamped system is always sluggish. 



3. Definitions of Transient Response Specifications 

• In many practical cases, the desired performance  characteristics are specified in 
terms of time-domain quantities. 
 

• Frequently, the performance characteristics of a control system are specified in terms 
of the transient response to a unit-step input since it is easy to generate and is 
sufficiently drastic.  



(1) Peak time tp and maximum percent overshoot Mp 

tp is the time required for the response to reach the first peak of the 
overshoot. 

Maximum percent overshoot: 
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(2) Maximum overshoot Mp (100%)  



The settling time is defined as the time required for the step response to reach and stay 
within a specified percentage of its final value. A frequently used figure is 5% or 2% 
tolerance band.  
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4. Transient Response Specifications for second-order systems 

(1) Peak time tp (0<<1): 
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(2) Maximum Overshoot (0<<1): 
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The relationship between   and Mp is given below. Note that if  is between 0.4 and 0.7, 
then Mp is between 25% and 4%  . 

25% 

4% 



    In particular, when =1/2=0.707, which 
corresponds to =450, Mp=4%! Such a  is 
called optimal damping ratio. 
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(3) Settling time (0<<1): 
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whose time constant is T=1/n. 



(4) Settling time ts for (1): 
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the system can be considered as two first-order subsystems connected in cascade. 
Since no oscillation occurs, only settling time ts is concerned. 



When 1, the settling time ts can be obtained by looking up the following table (for 
5% tolerance band):  
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Table: ts/T1 versus T1/T2  

For example: 



• ts is inversely proportional to the product of  and n. Since  is usually given by 
designer from the requirement of Mp, ts is mainly determined by n.  

Comments on settling time 



ts reaches a minimum value around  = 
0.76 (for the 2% criterion) or  = 0.68 
(for the 5% criterion) and then increases 
almost linearly for large values of .  
Note that =0.707 implies that =450.  
 
 
•(ts versus ). 

0.707 



For a given , the response is faster for larger n. Note that the overshoot is 
independent of n. 

Example. The step responses for =0.2 with n=1 and n=10, respectively, are 
shown below.   



    Example. The unit-step response of a 
second-order system is shown below, where 
limtc(t)=3. Determine its transfer function. 

Solution: The transfer function must have the following form: 
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    Example. Consider the following system: 
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where T=0.1s, and K is the open-loop gain. To determine K such that no overshoot and 
ts=1s.  

Solution: By the requirements,  should satisfy 1. Therefore, the closed-loop 
characteristic equation can be expanded as 
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To make the response as quickly as possible, it is required that  be close to 1. Looking 
up the table, we obtain that when 
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In that case, =1.02, which is very much close to 1 and therefore, possesses a fast transient 
response. Since ts=1s, we have 
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is satisfied. Otherwise, K should be redesigned. Fortunately, in this example, from 
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such a condition is satisfied. 

Finally, we should check that  
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5. Servo system with velocity feedback 

   The derivative of the output signal can be used to improve system performance : 

Note that without the derivative feedback (Kh=0), system may exhibit excessive 
overshoot. Indeed, the closed-loop transfer function in that case is  
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The improved damping ratio is:  
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However, taking the derivative feedback into account, the closed-loop transfer 
function becomes 



   For a servo control system, in obtaining the derivative of the output position signal, it 
is desirable to use a tachometer generator instead of physically differentiating the 

output signal (noise effect, p.175).  

K

Js B

rq mq

hK

1

s

qm



Servo-Tek Tachometer Generators provide a convenient means of converting 
rotational speed into an isolated analog voltage signal suitable for control applications.  

Mathematical model:  
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6. Impulse response of second-order systems 

By the property of LTI systems, differentiating the corresponding unit-step response of 
the second-order system (or directly taking the inverse Laplace trans-form) yields 
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For <1, c(t) oscillates and takes both positive and negative values. 



Questions: 1) How to obtain the unit-ramp responses for a second-order system 
when =0, 0<<1, and 1 ? 

2) How to obtain the maximum overshoot from the unit-impulse response? 

t 

c(t) 



 5-4 Higher-Order Systems  
In this section, we shall present a transient response analysis of higher-order systems 
in general forms. We shall show that the response of higher-order systems is the sum 
of the responses of first-order and second-order systems 

1. Transient response of higher-order systems 
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Consider the closed loop transfer function  
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Assumption 1: mn. 

Almost any physical control system satisfies this condition. A transfer function 
satisfies Assumption 1 is called a proper transfer function. If m<n, the system is called 
strictly proper. We only deal with proper or strictly proper systems.  



Assumption 3: All the poles are distinct.  
 
Unit-step response: Let the input signal be a unit-step function. Then the output is 

Assumption 2: All the closed-loop poles lie in the left-half s-plane.  
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where a and ak are the residues of the poles at s=0 and s=pk , respectively: 
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We consider the general case that C(s) consists of real poles and pairs of complex-
conjugate poles. Then 
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where n=q+2r. For example,  
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Therefore, for the general case, the unit-step response can be written as 
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Some useful concepts: Residues and dipoles:  

• Under the assumption 1, a pair of closely located closed-loop pole and zero is 
called a dipole and can be neglected (p.181).  

• On the other hand, if a closed-loop pole is located very far from the imaginary axis, 
the transient associated with the pole lasts a short time and therefore may be 
neglected. 

Example. A system’s transfer function is    
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By partial fraction expansion,  
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Taking the inverse Laplace transform yields  
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Obviously, the contribution of the term 0.01et   to the response is small and 
therefore, can be neglected.  

Example. A system’s transfer function is    
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2. Dominant poles 

Example. Consider the following third-order closed-loop system: 
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If the real parts satisfy 1/5n (1/4n), then the third-order system can be 
approximated by a second-order system 
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whose two poles are called dominant poles. 

In general, if the ratios of real parts exceed 5 (or 4) and there are no zeros nearby, then 
the closed-loop poles nearest the j axis will dominate in the transient response and 
are called dominant poles.  

Example. The locations of closed-loop poles and zero of a higher order system are 
shown below. Determine its dominant poles.  
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The pair of zero-pole nearest the j axis is a dipole and therefore can be neglected. 
By the rule of  determining the dominant poles introduced above, the system can 
be approximated by a second-order system with a pair of complex-conjugate 
dominant poles.  



(1) Concept of stability 

    Definition: A signal x(t) is said to be 
bounded if there is a positive real number 
M such that 

x(t) M 

    for all t[0, ). 

    Definition: A system is said to be 
bounded-input-bounded-output (BIBO) 
stable if for each bounded input the 
corresponding output is bounded.  

3. Stability analysis in complex plane 



(2). Stability criterion 

Theorem: An LTI system with closed-loop transfer function G(s) is said to be stable if 
and only if G(s) is proper and all its poles lie in the left-half s-plane (have negative 
real parts).  

Example. Consider the following three systems: 
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Investigate their unit-step responses. 



Example. An inverted pendulum mounted on a 
motor-drive cart is shown below. The objective 
is to keep the rod in a vertical position. 
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The system is unstable. 



(3). Relative Stability  

If dominant poles lie closed to j  axis, the transient may exhibit excessively oscillation or 
very slow. Therefore, to guarantee fast, yet well 

damped, transient response characteristics, it is 
necessary that the closed-loop poles lie in this 
region.   
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j 

Re 

In this region, >0.4 (<660), 
ts<4/ 
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450 

For example, if the two dominant poles are located in the region with =450 as shown in 
the following figure. Then, =0.707. The system possesses a satisfactory transient 
response. 


