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    SECTION B : MATHEMATICAL MODELING 

Topic Covered : Concept of transfer function, relationship between 
transfer function and impulse response, order of a system, block 
diagram algebra, signal flow graphs : Mason s gain formula & its 
application, characteristic equation, derivation of transfer functions 
of electrical and electromechanical systems. Transfer functions of 
cascaded and nonloading cascaded elements. Introduction to state 
variable analysis and design. 



TRANSFER FUNCTION  



1st order 
system 
Impulse response 

Step response 

Ramp response 

Relationship between impulse, step and ramp 

Relationship between impulse, step and ramp responses 
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Consider the impulse, step, ramp responses computed 
earlier. Identify the steady state and the transient 
parts. 

Compare steady-state part to input function, transient part to TF. 



2nd order system 

Over damped  

•(two real distinct roots = two 1st order systems with real poles) 

Critically damped 

•(a single pole of multiplicity two, highly unlikely, requires exact 

matching) 

Underdamped 

•(complex conjugate pair of poles, oscillatory behavior, most common) 

 step response 
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2nd Order System 

Prototype parameters:  

 undamped natural frequency,   

 damping ratio 

Relating problem specific parameters to prototype parameters 



Transient vs Steady state 

Consider the step, responses computed earlier. Identify the 

steady state and the transient parts. 



2nd order system 

Over damped  

•(two real distinct roots = two 1st order systems with real poles) 

Critically damped 

•(a single pole of multiplicity two, highly unlikely, requires exact 

matching) 

Underdamped 

•(complex conjugate pair of poles, oscillatory behavior, most common) 

 step response 
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Use of Prototypes 

Too many examples to cover them all 

We cover important prototypes 

We develop intuition on the prototypes 

We cover how to convert specific examples to prototypes 

We transfer our insight, based on the study of the prototypes to 

the specific situations. 



Transient-Response Spedifications 

1. Delay time, td: The time required for the response to reach half 

the final value the very first time. 

2. Rise time, tr: the time required for the response to rise from  

 10% to 90% (common for overdamped and 1st order systems); 

 5% to 95%;  

 or 0% to 100% (common for underdamped systems); 

 of its final value 

1. Peak time, tp: 

2. Maximum (percent) overshoot, Mp: 

3. Settling time, ts 



Derived relations for 2nd 
Order Systems 
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See book for details. (Pg. 232) 

Allowable Mp determines damping ratio. 

Settling time then determines undamped natural frequency.  

Theory is used to derive relationships between design 

specifications and prototype parameters.  

Which are related to problem parameters. 



Higher order system 

PFEs have linear denominators.  

 

•each term with a real pole has a time constant 

 

•each complex conjugate pair of poles has a damping ratio 

and an undamped natural frequency.  



Routh’s Stability Criterion 
How do we determine stability without finding all poles? 

Actual poles provide more info than is needed.  

All we need to know if any poles are in LHP. 

Routh’s stability criterion (Section 5-7). 
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What values of K produce a stable system? 



BLOCK DIAGRAM ALGEBRA 

• A graphical tool can help us to visualize the model of a 
system and evaluate the mathematical relationships 
between their elements, using their transfer functions. 
 

• In many control systems, the system of equations can 
be written so that their components do not interact 
except by having the input of one part be the output 
of another part. 
 

• In these cases, it is very easy to draw a block diagram 
that represents the mathematical relationships in 
similar manner to that used for the component block 
diagram.     

 



BLOCK DIAGRAM 

• It represents the mathematical relationships 
between the elements of the system. 
 
 
 
 

• The transfer function of each component is 
placed in box, and the input-output relationships 
between components are indicated by lines and 
arrows. 
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• Using block diagram, we can solve the equations by 
graphical simplification, which is often easier and 
more informative than algebraic manipulation, even 
though the methods are in every way equivalent.  
 

• It is convenient to think of each block as representing 
an electronic amplifier with the transfer function 
printed inside. 
 

• The interconnections of blocks include summing 
points, where any number of signals may be added 
together. 

 



1st & 2nd  Elementary Block Diagrams 

• Block in series: 

 

• Blocks in parallel with 
their outputs added: 
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3rd Elementary Block Diagram 
• Single-loop negative feedback 

 

 

 

 
 

 

 

Two blocks are connected in a feedback 
arrangement so that each feeds into 
the other: 

 

• The overall transfer 
function is given by: 
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Feedback Rule 

The gain of a single-loop negative feedback 
system is given by the forward gain divided 

by the sum of 1 plus the loop gain 
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1st Elementary Principle of Block 
Diagram Algebra 



2nd  Elementary Principle of Block 
Diagram Algebra  



3rd Elementary Principle of Block 
Diagram Algebra  



Example 1: Transfer function 
from a Simple Block Diagram 

42

42

42
1

42

2

2

2















ss

s
)s(T

s

s
s

s

)s(T

)s(R

)s(Y
)s(T



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 



Example 2: TF from the Block 
Diagram 
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Block Diagram and its 
corresponding Signal Flow Graph  

• Compact alternative notation to the block diagram. 

• It characterizes the system by a network of directed 
branches and associated transfer functions. 

• The two ways of depicting signal are equivalent. 



SIGNAL FLOW GRAPHS 

• A signal flow graph is a pictorial 
representation of the simultaneous equation 
describing a system. Signal flow graph is 
applicable to the linear systems. 

• The signal flow graph was introduced by S.J. 
Mason for the cause-and-effect  
representation of linear systems that are 
modeled by algebraic equations. 



SIGNAL FLOW GRAPHS…. 



Definitions of SFG Terms 
1. Input Node (Source): An input node is a node that has only outgoing branches. Node y1 in 

Fig. 2.2 is input node. 

2.  Output Node (Sink): An output node is a node that has only incoming branches and have no 
outgoing branches. Node y5 in Fig. 2.2 is output node. 

3. Branch: The transmission function Aij is represented by a line with an arrow, called a branch. 

4. Path: A path is a traversal of connected branches in the direction of the branch arrows. The 
path should not cross a node more than once. F o r E x am p le , y1 to y2 to y3 to y4 to y5 

5. Forward path: A forward path is a path that starts at an input node and ends at an output 
node and no node is traversed more than once. 

6.  Feedback loop or feedback path: A loop is a path that originates and terminates on the 
same node and along which no other node is encountered more than once. For example, 
there are four loops in the SFG of Fig. 2.2. These are shown in Fig. 2.3. 

7. Path Gain: The path gain is the product of the branch gains encountered in traversing a path. 
Path gain of path y1to y2 to y3 to y4 in Fig. 2.2 is A12A23A34.  

8. Forward Path Gain: The forward path is the path gain of a forward path. 

9. Loop Gain: The loop gain is the path gain of a loop. For example the loop gain of the loop y3 
to y4 to y3 in Fig. 2.2 is A34A43. 

10. Nontouching loops: If the loops does not have a common node then they are said to be 
nontouching loops. For example, the loop y2 to y3 to y2 and y4 to y4 of the SFG in Fig. 2.2 are 
nontouching loops. 

11. Self loop: A self-loop is a feedback loop consisting of a single branch. For example A44 is a 
self-loop. 





Signal Flow Algebra 
1. The Addition Rule: The value of variable 

designated by a node is equal to the sum of all 
signals entering the node. 

 

 

2. The Transmission Rule: The value of the variable 
designated by a node is transmitted on every 
branch leaving that node. 

 





MASON’S GAIN FORMULA 





Application of Mason’s Gain Formula 



Characteristic Equations 
• Characteristic equations can be defined with 

respect to differential equations, transfer 
functions,or state equations. 

 







Electric Network Transfer Function 

• In this section, we formally apply the transfer 
function to the mathematical modeling of electric 
circuits including passive networks 

• Equivalent circuits for the electric networks that 
we work with first consist of three passive linear 
components: resistors, capacitors, and inductors.“ 

• We now combine electrical components into 
circuits, decide on the input and output, and find 
the transfer function. Our guiding principles are 
Kirchhoff s laws. 

 



Electric Network Transfer Function 

Table 2.3 Voltage-current, voltage-charge, and 

impedance relationships for capacitors, 
resistors, and inductors 



2.8 Electromechanical System Transfer 
Functions 

• Now, we move to systems that are hybrids of electrical and 

mechanical variables, the electromechanical systems. 

 

• A motor is an electromechanical component that yields a 

displacement output for a voltage input, that is, a mechanical 

output generated by an electrical input. 

 

• We will derive the transfer function for one particular kind of 

electromechanical system, the armature-controlled dc 

servomotor.  

• Dc motors are extensively used in control systems 



Modeling – Electromechanical Systems 

What is DC motor? 

An actuator, converting electrical energy into rotational 
mechanical energy 



Modeling – Why DC motor? 

• Advantages: 

– high torque 

– speed controllability 

– portability, etc. 

• Widely used in control applications: robot, tape drives, 

printers, machine tool industries, radar tracking system, 

etc. 

• Used for moving loads when 

– Rapid (microseconds) response is not required 

– Relatively low power is required 



DC Motor 



Modeling – Model of DC Motor 



Dc Motor 

ia(t) = armature current         Ra = armature resistance 

Ei(t) = back emf                   TL(t) = load torque 

Tm(t) = motor torque          θm(t) = rotor displacement 

Ki — torque constant            La = armature inductance 

ea(t) = applied voltage         Kb = back-emf constant 

ωm magnetic flux in the air gap   θm(t) — rotor angular velocity 

Jm = rotor inertia           Bm = viscous-friction coefficient 



The Mathematical Model Of Dc Motor 

The relationship between the armature current, ia(t), the applied 

armature voltage, ea(t), and the back emf, vb(t), is found by 

writing a loop equation around the Laplace transformed 

armature circuit 

 

The torque developed by the motor is proportional to the 

armature current; thus 

 

 

where Tm is the torque developed by the motor, and Kt is a constant of 

proportionality, called the motor torque constant, which depends on the 

motor and magnetic field characteristics. 

 



The Mathematical Model Of Dc Motor 

Mechanical System 

 

 

Since the current-carrying armature is rotating in a magnetic 

field, its voltage is proportional to speed. Thus,  

 

 

Taking Laplace Transform 



The Mathematical Model Of Dc Motor 

We have  

Electrical System 

 

 

                                                      GIVEN 

Mechanical System 



The Mathematical Model Of Dc Motor 

To find T.F 

 

 

 

If we assume that the armature inductance, La, is small compared to 

the armature resistance, Ra, which is usual for a dc motor, above Eq.  

Becomes 

 

 

the desired transfer function of DC Motor: 



2. Transfer functions of cascaded elements 
  
Example. Find Eo(s)/Ei(s). 

+

-

+

-

ie oe

a

b

1i 2i

1R 2R

1C 2C

Note that in this circuit, the second portion (R2C2) produces a loading effect on the first 
stage (R1C1 portion); that is , we cannot obtain the transfer function as we did for transfer 
functions in cascade. 
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The above analysis shows that, if two RC circuits connected in cascade so that the 
output from the first circuit is the input to the second, the overall transfer function is 
not the product of 1/(R1C1s+1) and 1/(R2C2s+1) due to the loading effect (a certain 
amount of power is withdrawn). 



3. Complex impedances  
  
Resistance R: R 

Capacitance: 1/Cs 

Inductance: Ls 

Example. Find Y(s)/U(s) 
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Example. Find Eo(s)/Ei(s). 
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Solution: Utilizing complex impedance approach, we have (from left to right) 
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Example. Find Eo(s)/Ei(s). 

C 



4. Transfer functions of nonloading cascaded elements 
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Isolating

amplifier

(Gain )K

Again, consider the two simple RC circuits. Now, the circuits are isolated by an amplifier 
as shown below and therefore, have negligible loading effects, and the transfer 
function 
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In general, the transfer function of a system consisting of two or more nonloading 
cascaded elements can be obtained by eliminating the intermediate inputs and 
outputs: 
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