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Introduction
 Angle modulation systems and FM can provide a high degree

of noise immunity
 This noise immunity is obtained at the price of sacrificing

channel bandwidth
 Bandwidth requirements of angle modulation systems are

considerably higher than that of amplitude modulation
systems

 This chapter deals with the followings:
 Effect of noise on amplitude modulation systems
 Effect of noise on angle modulation systems
 Carrier-phase estimation using a phase-locked loop (PLL)
 Analyze the effects of transmission loss and noise on analog

communication systems
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EFFECT OF NOISE ON AMPLITUDE-MODULATION
SYSTEMS
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Effect of Noise on a Baseband System
 Since baseband systems serve as a basis for comparison of

various modulation systems, we begin with a noise analysis of
a baseband system.
 In this case, there is no carrier demodulation to be performed.
 The receiver consists only of an ideal lowpass filter with the

bandwidth W.
 The noise power at the output of the receiver, for a white noise

input, is

 If we denote the received power by PR, the baseband SNR is
given by

(6.1.2)
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White process (Section 5.3.2)
 White process is processes in which all frequency components

appear with equal power, i.e., the power spectral density (PSD),
Sx(f), is a constant for all frequencies.

 the PSD of thermal noise, Sn(f), is usually given as
(where k is Boltzrnann's constant and  T is the temperature)

 The value kT is usually denoted by N0, Then
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Effect of Noise on DSB-SC AM
 Transmitted signal :

 The received signal at the output of the receiver noise-
limiting filter : Sum of this signal and filtered noise

 Recall from Section 5.3.3 and 2.7 that a filtered noise
process can be expressed in terms of its in-phase and
quadrature components as

(where nc(t) is in-phase component and ns(t) is
quadrature component)
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Effect of Noise on DSB-SC AM
 Received signal (Adding the filtered noise to the

modulated signal)

 Demodulate the received signal by first multiplying
r(t) by a locally generated sinusoid cos(2fct + ),
where  is the phase of the sinusoid.

 Then passing the product signal through an ideal
lowpass filter having a bandwidth W.
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Effect of Noise on DSB-SC AM
 The multiplication of r(t) with cos(2fct + ) yields

 The lowpass filter rejects the double frequency components
and passes only the lowpass components.
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Effect of Noise on DSB-SC AM
 In Chapter 3, the effect of a phase difference between the

received carrier and a locally generated carrier at the
receiver is a drop equal to cos2() in the received signal
power.
 Phase-locked loop (Section 6.4)
 The effect of a phase-locked loop is to generate phase of the received

carrier at the receiver.
 If a phase-locked loop is employed, then  = 0 and the demodulator

is called a coherent or synchronous demodulator.

 In our analysis in this section, we assume that we are
employing a coherent demodulator.
 With this assumption, we assume that  = 0
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Effect of Noise on DSB-SC AM
 Therefore, at the receiver output, the message signal and

the noise components are additive and we are able to define
a meaningful SNR. The message signal power is given by

 power PM is the content of the message signal

 The noise power is given by

 The power content of n(t) can be found by noting that it is
the result of passing nw(t) through a filter with bandwidth
Bc.
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Effect of Noise on DSB-SC AM
 Therefore, the power spectral density of n(t) is given by

 The noise power is

 Now we can find the output SNR as

 In this case, the received signal power, given by Eq. (3.2.2),
is

PR = Ac
2PM /2.
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Effect of Noise on DSB-SC AM
 The output SNR for DSB-SC AM may be expressed as

 which is identical to baseband SNR which is given by Equation (6.1.2).

 In DSB-SC AM, the output SNR is the same as the SNR for a
baseband system
 DSB-SC AM does not provide any SNR improvement over

a simple baseband communication system
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Effect of Noise on SSB AM
 SSB modulated signal :

 Input to the demodulator

 Assumption : Demodulation with an ideal phase reference.
 Hence, the output of the lowpass filter is the in-phase

component (with a coefficient of ½) of the preceding signal.
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Effect of Noise on SSB AM
 Parallel to our discussion of DSB, we have

 The signal-to-noise ratio in an SSB system is equivalent to
that of a DSB system.
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Effect of Noise on Conventional AM
 DSB AM signal :

 Received signal at the input to the demodulator

 a is the modulation index

 mn(t) is normalized so that its minimum value is -1

 If a synchronous demodulator is employed, the situation is basically
similar to the DSB case, except that we have 1 + amn(t) instead of
m(t).

 After mixing and lowpass filtering
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Effect of Noise on Conventional AM
 Received signal power

 Assumed that the message process is zero mean.

 Now we can derive the output SNR as

  denotes the modulation efficiency
 Since                                  , the SNR in conventional AM is always

smaller than the SNR in a baseband system.
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Effect of Noise on Conventional AM
 In practical applications, the modulation index a is in the range of

0.8-0.9.
 Power content of the normalized message process depends on the

message source.
 Speech signals : Large dynamic range, PM is about 0.1.
 The overall loss in SNR, when compared to a baseband system, is a

factor of 0.075 or equivalent to a loss of 11 dB.
 The reason for this loss is that a large part of the transmitter

power is used to send the carrier component of the modulated
signal and not the desired signal.

 To analyze the envelope-detector performance in the presence
of noise, we must use certain approximations.
 This is a result of the nonlinear structure of an envelope detector,

which makes an exact analysis difficult.
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Effect of Noise on Conventional AM
 In this case, the demodulator detects the envelope of the

received signal and the noise process.
 The input to the envelope detector is

 Therefore, the envelope of r ( t ) is given by

 Now we assume that the signal component in r ( t ) is
much stronger than the noise component. Then

 Therefore, we have a high probability that
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Effect of Noise on Conventional AM
 After removing the DC component, we obtain

 which is basically the same as y(t) for the synchronous
demodulation without the ½ coefficient.
 This coefficient, of course, has no effect on the final SNR.
 So we conclude that, under the assumption of high

SNR at the receiver input, the performance of
synchronous and envelope demodulators is the
same.

 However, if the preceding assumption is not true, that is, if
we assume that, at the receiver input, the noise power is
much stronger than the signal power, Then
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Effect of Noise on Conventional AM

 (a) :                             is small compared with the other components
 (b) :                                    ;the envelope of the noise process
 Use the approximation

, where

 

   

 

 )(1
)(

)(
)(

)(1
)(

)(
1)(

)(1
)()(

)(2
1)()(

)](1)[(2)()()](1[

)()()](1[)(

2

22
22

2222

22

tam
tV

tnA
tV

tam
tV

tnA
tV

tam
tntn

tnA
tntn

tamtnAtntntamA

tntntamAtV

n
n

cc
n

n
n

cc
n

b

n
sc

cc
sc

a

nccscnc

scncr






























 (a) :                             is small compared with the other components
 (b) :                                    ;the envelope of the noise process
 Use the approximation

, where

 

   

 

 )(1
)(

)(
)(

)(1
)(

)(
1)(

)(1
)()(

)(2
1)()(

)](1)[(2)()()](1[

)()()](1[)(

2

22
22

2222

22

tam
tV

tnA
tV

tam
tV

tnA
tV

tam
tntn

tnA
tntn

tamtnAtntntamA

tntntamAtV

n
n

cc
n

n
n

cc
n

b

n
sc

cc
sc

a

nccscnc

scncr






























22 )](1[ tamA nc 

)()()( 22 tVtntn nsc 

  smallfor,11 2  )(1
)()(

)(2
22

tam
tntn

tnA
n

sc

cc 






Effect of Noise on Conventional AM
 Then

 We observe that, at the demodulator output, the signal
and the noise components are no longer additive.
 In fact, the signal component is multiplied by noise and

is no longer distinguishable.
 In this case, no meaningful SNR can be defined.
 We say that this system is operating below the threshold.
 The subject of threshold and its effect on the

performance of a communication system will be covered
in more detail when we discuss the noise performance in
angle modulation.
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