


FOURIER SERIES
 Usually, a signal is described as a function of time .
 There are some amazing advantages if a signal can be 

expressed in the frequency domain.
 Fourier transform analysis is named after Jean Baptiste 

Joseph Fourier (1768-1830). 



 A Fourier series (FS) is used for representing a
continuous-time periodic signal as weighted
superposition of sinusoids.

 Periodic Signals A continuous-time signal is said
to be periodic if there exists a positive constant
such that

where is the period of the signal.
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 : fundamental Period
 : fundamental frequency

 Example: Periodic and aperiodic signal
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After the analysis, we obtain the following
information about the signal:

I. What all frequency components are presenting the 
signal?

II. Their amplitude and 
III. The relative phase difference between these 

frequency components.

All the frequency components are nothing else but sine 
waves at those frequencies.
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+ 1 sin(3x) B A+B
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Existence of the Fourier Series
 Existence

 Convergence for all t

 Finite number of maxima and minima in one period of 
f(t)

 These are known as the Dirichlet conditions
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Fourier Series
 General representation

of a periodic signal

 Fourier series
coefficients

 Polar Form of Fourier
series
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 {xn} are called the Fourier series coefficients of the 
signal x(t).

 The quantity                 is called the fundamental 
frequency of the signal x(t)

 The Fourier series expansion can be expressed in terms 
of angular frequency                by

and
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 Discrete spectrum - We may write                     , where 
gives the magnitude of the nth harmonic and           

gives its phase.                      
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 Example: Let x(t) denote the periodic signal depicted in 
Figure 2.2

0
0( ) ,      ,

n

t nTx t T 






    
 


where 11, | |

2
1 1( ) , | |
2 2
0, otherwise.

t

t t

 

  




is a rectangular pulse. Determine the Fourier series expansion for this 
signal.



Solution: We first observe that the period of the signal is 
T0 and 
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Therefore, we have
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Example #1

 Fundamental period
T0 = p

 Fundamental frequency
f0 = 1/T0 = 1/p Hz
0 = 2p/T0 = 2 rad/s
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Example #2

 Fundamental period
T0 = 2

 Fundamental frequency
f0 = 1/T0 = 1/2 Hz
0 = 2p/T0 = p rad/s
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Example #3

 Fundamental period
T0 = 2p

 Fundamental frequency
f0 = 1/T0 = 1/2p Hz
0 = 2p/T0 = 1 rad/s
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