Transformed Circuit



These basic relationships may also be

represented in the complex-frequency domain. Ideal energy sources, for
example, which were given in time domain as v(z) and i(¢), may now be
represented by their transforms ¥(s) = L[o(¢)] and I(s) = L[i(z)]. The
resistor, defined by the v-i relationship

v(t) = Ri(1) (7.1)
is defined in the frequency domain by the transform of Eq. 7.1, or
V(s) = R I(s) (7.2)
For an inductor, the defining v-7 relationships are
v(1) =_L§—:
(7.3)

i(t) = ;_,.E_ o(r) dr + i(0—)

Transforming both equations, we obtain
V(s) = sLI(s) — Li(0—)

i(0—) (7.4)

I(s) = lL V(s) +
175
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The transformed circuit representation for an inductor is depicted i1n
Fig. 7.1. For a capacitor, the defining equations are

v(t) = E:l- J:_ i() dr + v(0—)

(7.5)
i(t) = C dv .
dt
The frequency domain counterparts of these equations are then
V() = = 1) + 202
sC ~ (7.6)

I(s) = sC V(s) — Cv(0—)



Thevenin’s and Nortons Theorem

In network analysis, the objective of a problem is often to determine a
single branch current through a given element or a single voltage across
an element. In problems of this kind, it is generally not practicable to
write a complete set of mesh or node equations and to snl:fc a system of
equations for this one current or voltage. It is then convenient to use t:w:a
very important theorems on equivalent circuits, known as Thévenin’s

and Norton's theorems.
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The System Function

As we discussed earlier, a linear system is one in which the excitation
e(?) 1s related to the response r(f) by a linear differential equation. When
the Laplace transform is used in describing the system, the relation between
the excitation E(s) and the response R(s) is an algebraic one, In particular,
when we discuss initially inert systems, the excitation and response are
related by the system function H(s) as given the relation

R(s) = E(s)H(s) (7.42)
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the system function may assume many forms
and may have special names such as .::fr.r.umg—pomr admittance, rransfer

impedance, voltage or current-ratio transfer function. This is because the
form of the system function depends on whether the excitation is a voltage
or current source, and whether the response is a specified current or
voltage, We now discuss some specific forms of system functions,

Impedance
When the excitation is a current source and the response is a voltage,
then the system function is an impedance. When both excitation and
response ar¢ measured between the same pair of terminals, we have a
driving-point impedance. An example of a driving-point impedance is
given in Fig. 7.25, where
H(s) = D) g 4 (SO)sL (7.43)
I(s) sL+ 1/sC
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Admittance
When the excitation is a voltage source and the response is a current,
H(s) is an admittance. In Fig. 7.26, the transfer admittance 7,/V, is

obtained from the network as

_ I(s) _ 1
H(s) V,(s) R, + sL+ 1/sC, (7.44)

Yoltage-ratio transfer function

When the excitation is a voltage source and the response is also a voltage,
then H(s) is a voltage-ratio transfer function. In Fig. 7.27, the voltage-
ratio transfer function Vy(s)/V,(s) is obtained as follows. We first find the
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Current-ratio transfer function

When the excitation is a current source and the response is another
current in the network, then H(s) is called a current-ratio transfer function.

As an example, let us find the ratio Iy/1, for the network given in Fig. 7.28.
Referring to the depicted network, we know that

Io(s) = Ii(s) + I(s), 11(5)'5-16, = Iy(s)(R + sL)  (7.48,7.49)

Eliminating the variable I,, we find

R + sl
I (s) = I,(s (1 + ) 7.50
o(8) = I(s) 1/sC (7.50)
so that the current-ratio transfer function is
I4(5) _ 1/sC (7.51)
1,(s) R 4+ sL + 1/sC
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