Convolution Integral

Given two functions $f_1(t)$ and $f_2(t)$, which are

zero for t < 0, the convolution theorem states that if the transform of $f_1(t)$ is $F_1(s)$, and if the transform of $f_2(t)$ is $F_2(s)$, the transform of the convolution of $f_1(t)$ and $f_2(t)$ is the product of the individual transforms, $F_1(s)$ $F_2(s)$, that is,

$$\mathbb{E}\left[\int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d\tau\right] = F_{1}(s) F_{2}(s)$$
 (7.97)

where the integral
$$\int_{-1}^{t} f_1(t-\tau) f_2(\tau) d\tau$$

is the convolution integral or folding integral, and is denoted operationally as

$$\int_0^t f_1(t-\tau)f_2(\tau) d\tau = f_1(t)^* f_2(t)$$
 (7.98)

Convolution integral(cont...)

Proof. Let us prove that $\mathbb{C}[f_1 * f_2] = F_1 F_2$. We begin by writing

$$\mathbb{E}[f_1(t)^* f_2(t)] = \int_0^\infty e^{-st} \left[\int_0^t f_1(t - \tau) f_2(\tau) \, d\tau \right] dt \tag{7.99}$$

From the definition of the shifted step function

$$u(t - \tau) = 1 \qquad \tau \le t$$

$$= 0 \qquad \tau > t \tag{7.100}$$

Cont.....

we have the identity

$$\int_0^t f_1(t-\tau)f_2(\tau) d\tau = \int_0^\infty f_1(t-\tau) u(t-\tau)f_2(\tau) d\tau \qquad (7.101)$$

Then Eq. 7.99 can be written as

$$\mathbb{E}[f_1(t)^* f_2(t)] = \int_0^\infty e^{-st} \int_0^\infty f_1(t-\tau) \, u(t-\tau) f_2(\tau) \, d\tau \, dt \qquad (7.102)$$

If we let $x = t - \tau$ so that

$$e^{-st} = e^{-s(x+r)} (7.103)$$

Cont.....

then Eq. 7.102 becomes

$$\Sigma[f_1(t)^* f_2(t)] = \int_0^\infty \int_0^\infty f_1(x) \, u(x) f_2(\tau) e^{-s\tau} e^{-sx} \, d\tau \, dx$$

$$= \int_0^\infty f_1(x) \, u(x) e^{-sx} \, dx \int_0^\infty f_2(\tau) e^{-s\tau} \, d\tau$$

$$= F_1(s) F_2(s) \tag{7.104}$$

The separation of the double integral in Eq. 7.104 into a product of two integrals is based upon a property of integrals known as the separability property.²

THE DUHAMEL SUPERPOSITION INTEGRAL

this section we will study the Duhamel superposition integral, which also describes an input-output relationship for a system. The superposition integral requires the step response $\alpha(t)$ to characterize the system behavior.

We plan to derive the superposition integral in two different ways.

The simplest is examined first. We begin with the excitation-response relationship R(s) = E(s) H(s) (7.128)

Multiplying and dividing by s gives

$$R(s) = \frac{H(s)}{s} \cdot s E(s) \tag{7.129}$$

Taking inverse transforms of both sides gives

$$\mathcal{L}^{-1}[R(s)] = \mathcal{L}^{-1} \left[\frac{H(s)}{s} \cdot s \ E(s) \right]
= \mathcal{L}^{-1} \left[\frac{H(s)}{s} \right] * \mathcal{L}^{-1}[s \ E(s)]$$
(7.130)

which then yields

$$r(t) = \alpha(t)^* [e'(t) + e(0-) \delta(t)]$$

$$= e(0-) \alpha(t) + \int_{0-}^t e'(\tau) \alpha(t-\tau) d\tau$$
(7.131)

where e'(t) is the derivative of e(t), e(0-) is the value of e(t) at t=0-, and $\alpha(t)$ is the step response of the system. Equation 7.131 is usually referred to as the Duhamel superposition integral.