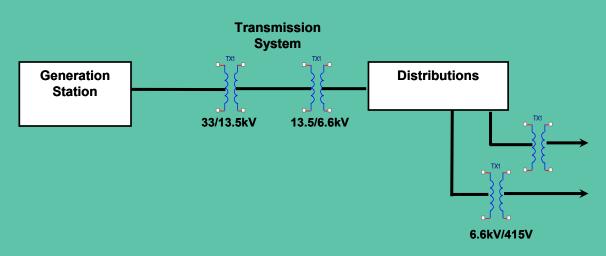
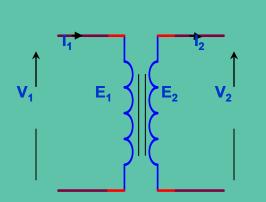
Introduction

- A transformer is a static machines.
- The word 'transformer' comes form the word 'transform'.
- Transformer is not an energy conversion device, but is a device that changes AC electrical power at one voltage level into AC electrical power at another voltage level through the action of magnetic field, without a change in frequency.
- It can be either to step-up or step down.



Ideal Transformer

- An ideal transformer is a transformer which has no loses, i.e. it's winding has no ohmic resistance, no magnetic leakage, and therefore no I² R and core loses.
- However, it is impossible to realize such a transformer in practice.
- Yet, the approximate characteristic of ideal transformer will be used in characterized the practical transformer.



 $N_1:N_2$

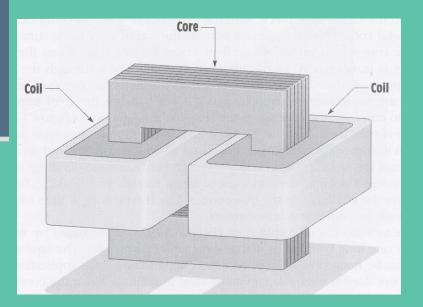
 V_1 – Primary Voltage V_2 – Secondary Voltage E_1 – Primary induced Voltage E_2 – secondary induced Voltage $N_1:N_2$ – Transformer ratio

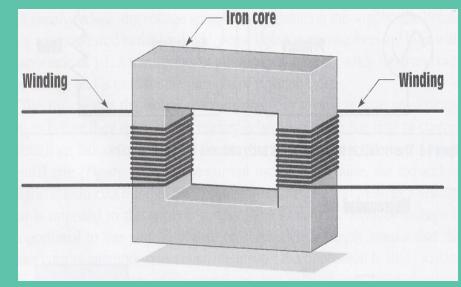
Transformer Construction

Two types of iron-core construction:

- a) Core type construction
- b) Shell type construction

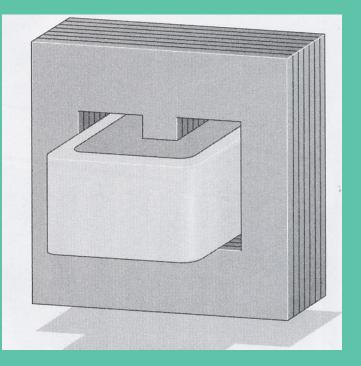
Core - type construction

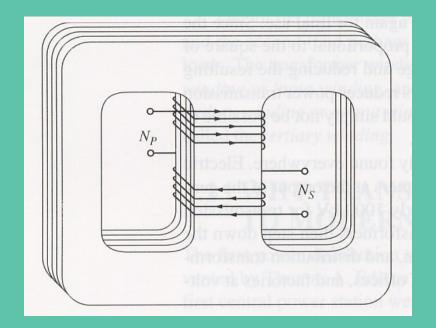




Transformer Construction

Shell - type construction





Faraday's Law states that,

If the flux passes through a coil of wire, a voltage will be induced in the turns of wire. This voltage is directly proportional to the rate of change in the flux with respect of time.

$$V_{ind} = Emf_{ind} = -\frac{d\Phi(t)}{dt}$$

Lenz's Law

If we have N turns of wire,

$$V_{ind} = Emf_{ind} = -N\frac{d\Phi(t)}{dt}$$

For an ac sources,

Let V(t) = V_m sinωt i(t) = i_m sinωt

Since the flux is a sinusoidal function;

Then:

Therefore: $\Phi(t) = \Phi_{m} \sin \omega t$ $V_{ind} = Emf_{ind} = -N \frac{d\Phi_{m} \sin \omega t}{dt}$ $= -N\omega \Phi_{m} \cos \omega t$ $V_{ind} = Emf_{ind(\max)} = N\omega \Phi_{m} = 2\pi f N \Phi_{m}$ $Emf_{ind(rms)} = \frac{N\omega \Phi_{m}}{\sqrt{2}} = \frac{2\pi f N \Phi_{m}}{\sqrt{2}} = 4.44 f N \Phi_{m}$

For an ideal transformer $F = -4.44 \text{ fW} \Phi$

$$E_1 == 4.44 f N_1 \Phi_m$$

$$E_2 == 4.44 f N_2 \Phi_m$$
(i)

In the equilibrium condition, both the input power will be equaled to the output power, and this condition is said to ideal condition of a transformer.

Input power = output power $V_1 I_1 \cos \theta = V_2 I_2 \cos \theta$ $\therefore \frac{V_1}{V_2} = \frac{I_2}{I_1}$

From the ideal transformer circuit, note that,

$$E_1 = V_1 \ and \ E_2 = V_2$$

Hence, substitute in (i)

Therefore,
$$\frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = a$$

Where, 'a' is the Voltage Transformation Ratio; which will determine whether the transformer is going to be step-up or step-down

For a >1 $\longrightarrow E_1 > E_2$

For a <1 \longrightarrow E₁ < E₂

Transformer Rating

- Transformer rating is normally written in terms of Apparent Power.
- Apparent power is actually the product of its rated current and rated voltage.

$$VA = V_1 I_1 = V_2 I_2$$

Where,

- I_1 and I_2 = rated current on primary and secondary winding.
- V_1 and V_2 = rated voltage on primary and secondary winding.

Rated currents are actually the full load currents in transformer

Example

 1. 1.5kVA single phase transformer has rated voltage of 144/240 V. Finds its full load current.
 Solution

$$I_{1FL} = \frac{1500}{144} = \underline{10.45A}$$
$$I_{2FL} = \frac{1500}{240} = \underline{6A}$$

Example

- 2. A single phase transformer has 400 primary and 1000 secondary turns. The net cross-sectional area of the core is 60m². If the primary winding is connected to a 50Hz supply at 520V, calculate:
 a) The induced voltage in the secondary winding
 b) The peak value of flux density in the core Solution
 - $N_1 = 400 \quad V_1 = 520V \quad A = 60m^2$ $N_2 = 1000 \quad V_2 = ?$

Example 2 (Cont)

a) Know that, $a = \frac{N_1}{N_2} = \frac{V_1}{V_2}$ $\frac{400}{1000} = \frac{520}{V_2}$ $V_2 = 1300V$

b) Emf,
$$E = 4.44 f N \Phi_m$$

= $4.44 f N [B_m \times A]$
 $known, E_1 = 520V, E_2 = 1300V$
 $E = 4.44 f N [B_m \times A]$
 $520 = 4.44(50)(400)(B_m)(60)$
 $B_m = \underline{0.976Wb/m^2}$

Example

- A 25kVA transformer has 500 turns on the primary and 50 turns on the secondary winding. The primary is connected to 3000V, 50Hz supply. Find:
 - a) Full load primary current
 - b) The induced voltage in the secondary winding
 - c) The maximum flux in the core

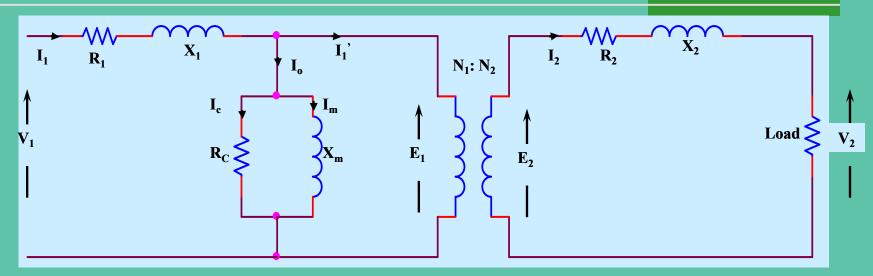
Solution

VA = 25kVA $N_1 = 500$ $V_1 = 3000V$ $N_2 = 50$ $V_2 = ?$

Example 3 (Cont.)

Know that, $VA = V \times I$ a) $I_{1FL} = \frac{VA}{V_1} = \frac{25 \times 10^3}{3000} = \underline{\underline{8.33A}}$ Induced voltage, $a = \frac{N_1}{N_2} = \frac{I_2}{I_1}$ b) $I_2 = 500 \left(\frac{8.33}{50} \right) = 83.3A$ $E_2 = E_1 \frac{I_1}{I_2} = 3000 \left(\frac{8.33}{83.3}\right) = \underline{300V}$ Max flux C) $E = 4.44 f N \Phi$ $300 = 4.44(50)(50)\Phi$ $\Phi = 27 mWb$

Practical Transformer (Equivalent Circuit)

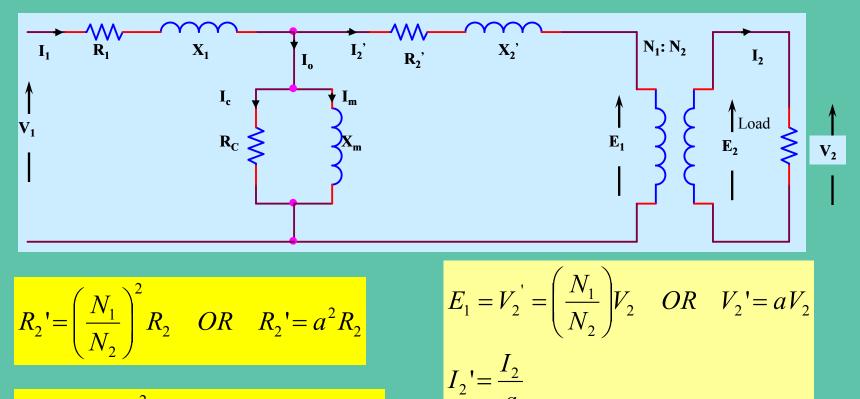


- V_1 = primary supply voltage
- V₂ = 2nd terminal (load) voltage
- E_1 = primary winding voltage
- $E_2 = 2^{nd}$ winding voltage
- I₁ = primary supply current
- $I_2 = 2^{nd}$ winding current
- I₁' = primary winding current
- $I_o =$ no load current

- $I_c = core current$
- I_m = magnetism current
- R₁= primary winding resistance
- R₂= 2nd winding resistance
- X₁= primary winding leakage reactance
- X₂= 2nd winding leakage reactance
- R_c = core resistance
- X_m= magnetism reactance

Single Phase Transformer (Referred to Primary)

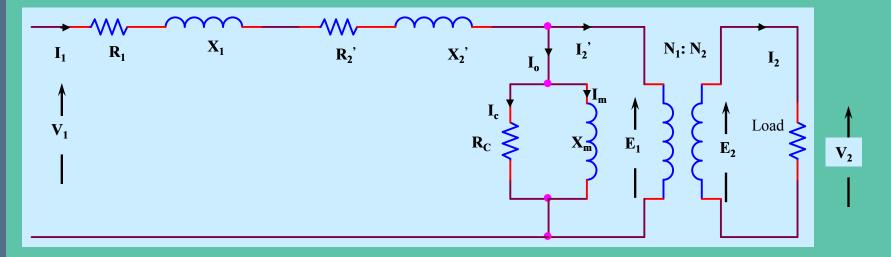
Actual Method



$$X_{2}' = \left(\frac{N_{1}}{N_{2}}\right)^{2} X_{2} \quad OR \quad X_{2}' = a^{2} X_{2}$$

Single Phase Transformer (Referred to Primary)

Approximate Method



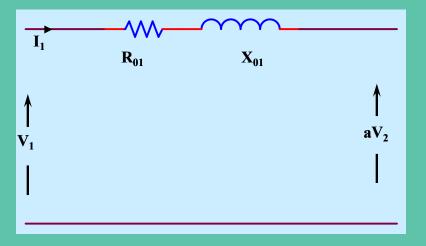
$$R_2' = \left(\frac{N_1}{N_2}\right)^2 R_2 \quad OR \quad R_2' = a^2 R_2$$

$$X_{2}' = \left(\frac{N_{1}}{N_{2}}\right)^{2} X_{2} \quad OR \quad X_{2}' = a^{2} X_{2}$$

$$E_1 = V_2' = \left(\frac{N_1}{N_2}\right) V_2 \quad OR \quad V_2' = aV_2$$
$$I_2' = \frac{I_2}{a}$$

Single Phase Transformer (Referred to Primary)

Approximate Method



In some application, the excitation branch has a small current compared to load current, thus it may be neglected without causing serious error.

$$R_2' = \left(\frac{N_1}{N_2}\right)^2 R_2 \quad OR \quad R_2' = a^2 R_2$$

$$X_{2}' = \left(\frac{N_{1}}{N_{2}}\right)^{2} X_{2} \quad OR \quad X_{2}' = a^{2} X_{2}$$

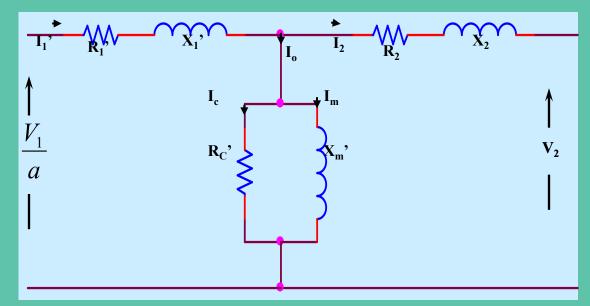
$$V_2' = \left(\frac{N_1}{N_2}\right) V_2 \quad OR \quad V_2' = aV_2$$

$$R_{01} = R_1 + R_2'$$

 $X_{01} = X_1 + X_2'$

Single Phase Transformer (Referred to Secondary)

Actual Method

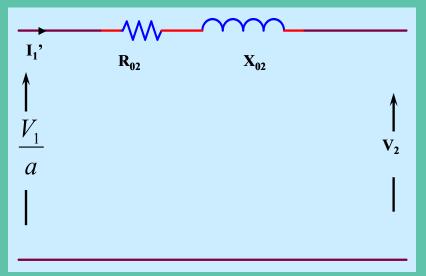


$$R_{1}' = \left(\frac{N_{2}}{N_{1}}\right)^{2} R_{1} \quad OR \quad R_{1}' = \frac{R_{1}}{a^{2}}$$
$$X_{1}' = \left(\frac{N_{2}}{N_{1}}\right)^{2} X_{1} \quad OR \quad X_{1}' = \frac{X_{1}}{a^{2}}$$

$$V_1' = \left(\frac{N_2}{N_1}\right) V_1 \quad OR \quad V_1' = \frac{V_1}{a}$$

Single Phase Transformer (Referred to Secondary)

Approximate Method



$$R_{1}' = \left(\frac{N_{2}}{N_{1}}\right)^{2} R_{1} \quad OR \quad R_{1}' = \frac{R_{1}}{a^{2}}$$

$$X_{1}' = \left(\frac{N_{2}}{N_{1}}\right)^{2} X_{1} \quad OR \quad X_{1}' = \frac{X_{1}}{a^{2}}$$

Neglect the excitation branch

$$R_{02} = R_1' + R_2$$

 $X_{02} = X_1' + X_2$

$$V_1' = \left(\frac{N_2}{N_1}\right) V_1 \quad OR \quad V_1' = \frac{V_1}{a}$$

$$I_1' = aI_1$$

Example

- 4. For the parameters obtained from the test of 20kVA 2600/245 V single phase transformer, refer all the parameters to the high voltage side if all the parameters are obtained at lower voltage side.
 - $R_c = 3.3\Omega$, $X_m = j1.5\Omega$, $R_2 = 7.5\Omega$, $X_2 = j12.4\Omega$ Solution

Given

$$R_c = 3.3\Omega, X_m = j1.5\Omega,$$

 $R_2 = 7.5\Omega, X_2 = j12.4\Omega$

Example 4 (Cont)

i) Refer to H.V side (primary)

$$a = \frac{E_1}{E_2} = \frac{V_1}{V_2} = \frac{2600}{245} = \underline{10.61}$$

$$R_{2}'=(10.61)^{2} (7.5) = \underline{844.65\Omega},$$

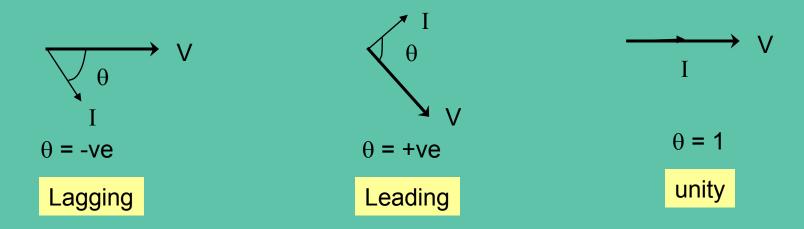
$$X_{2}'=j(10.61)^{2} (12.4) = \underline{1.396k\Omega},$$

$$R_{c}'=(10.61)^{2} (3.3) = \underline{371.6\Omega},$$

$$X_{m}'=j(10.61)^{2} (1.5) = \underline{j168.9 \Omega}$$

Power Factor

Power factor = angle between Current and voltage, cos θ



Power factor always lagging for real transformer.

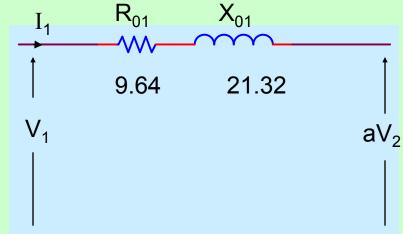
Example

- 5. A 10 kVA single phase transformer 2000/440V has primary resistance and reactance of 5.5Ω and 12Ω respectively, while the resistance and reactance of secondary winding is 0.2Ω and 0.45 Ω respectively. Calculate:
 - i. The parameter referred to high voltage side and draw the equivalent circuit
 - ii. The approximate value of secondary voltage at full load of 0.8 lagging power factor, when primary supply is 2000V.

Example 5 (Cont)

Solution

R₁=5.5 Ω , X₁=j12 Ω R₂=0.2 Ω , X₂=j0.45 Ω <u>i) Refer to H.V side (primary)</u> $a = \frac{E_1}{E_2} = \frac{V_1}{V_2} = \frac{2000}{440} = \frac{4.55}{440}$ R₂'=(4.55)² (0.2) = <u>4.14 Ω </u>, X₂'=j(4.55)²0.45 = <u>j9.32 Ω </u>



<u>Therefore</u>, $R_{01}=R_1+R_2'=5.5 + 4.13 = 9.64 \Omega$ $X_{01}=X_1+X_2'=j12 + j9.32 = j21.32 \Omega$

Example 5 (Cont.)

Solution ii) Secondary voltage p.f = 0.8 Cos θ = 0.8 θ = <u>36.87°</u> Full load, \longrightarrow $I_{FL_1} = \frac{10 \times 10^3 VA}{2000V} = 5A$ From eqn. cct,

$$V_{1} \angle 0^{\circ} = (R_{01} + jX_{01})(I_{1} \angle -\theta^{\circ}) + aV_{2}$$

2000\alpha 0^{\circ} = (9.64 + j21.32)(5\alpha - 36.87^{\circ}) + (4.55)V_{2}
$$V_{2} = \underline{422.6 \angle 0.8^{\circ}}$$

Transformer Losses

- Generally, there are two types of losses;
- i. Iron losses :- occur in core parameters
- ii. Copper losses :- occur in winding resistance
- i. <u>Iron Losses</u>

$$P_{iron} = P_c = (I_c)^2 R_c = P_{opencircuit}$$

ii. <u>Copper Losses</u>

$$P_{copper} = P_{cu} = (I_1)^2 R_1 + (I_2)^2 R_2 = P_{shortcircuit}$$

or if referred, $P_{cu} = (I_1)^2 R_{01} = (I_2)^2 R_{02}$

Transformer Efficiency

To check the performance of the device, by comparing the output with respect to the input.

The higher the efficiency, the better the system.

Efficiency,
$$\eta = \frac{Output Power}{Input Power} \times 100\%$$

$$= \frac{P_{out}}{P_{out} + P_{losses}} \times 100\%$$
$$= \frac{V_2 I_2 \cos \theta}{V_2 I_2 \cos \theta + P_c + P_{cu}} \times 100\%$$

 $\eta_{(fullload)} = \frac{VA\cos\theta}{VA\cos\theta + P_c + P_{cu}} \times 100\%$ $\eta_{(load n)} = \frac{nVA\cos\theta}{nVA\cos\theta + P_c + n^2 P_{cu}} \times 100\%$

Where, if $\frac{1}{2}$ load, hence n = $\frac{1}{2}$, $\frac{1}{4}$ load, n= $\frac{1}{4}$, 90% of full load, n =0.9

Where $P_{cu} = P_{sc}$ $P_{c} = P_{oc}$

Voltage Regulation

- The purpose of voltage regulation is basically to determine the percentage of voltage drop between no load and full load.
- Voltage Regulation can be determine based on 3 methods:
 - a) Basic Defination
 - b) Short circuit Test
 - c) Equivalent Circuit

Voltage Regulation (Basic Defination)

In this method, all parameter are being referred to primary or secondary side.

- Can be represented in either
 - Down voltage Regulation

$$V.R = \frac{V_{NL} - V_{FL}}{V_{NL}} \times 100\%$$

• Up – Voltage Regulation
$$V_{\rm m} - V_{\rm m}$$

$$V.R = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\%$$

Voltage Regulation (Short – circuit Test)

In this method, direct formula can be used.

Note that:

'-' is for Lagging power factor
'+' is for Leading power factor
I_{sc} must equal to I_{FL}

Voltage Regulation (Equivalent Circuit)

In this method, the parameters must be referred to primary or secondary

Note that:

'+' is for Lagging power factor
'-' is for Leading power factor
j terms ~0

Example

 In example 5, determine the Voltage regulation by using down – voltage regulation and equivalent circuit.
 Solution

Down – voltage Regulation

Know that, V_{2FL} =422.6V V_{2NL} =440V

Therefore,

$$V.R = \frac{V_{NL} - V_{FL}}{V_{NL}} \times 100\%$$
$$= \frac{440 - 422.6}{440} \times 100\%$$
$$= \underline{3.95\%}$$

Example 6 (Cont.)

Equivalent Circuit

 $I_1=5A$ $R_{01}=9.64\Omega$ $X_{01}=21.32\Omega$ $V_1=2000V$, 0.8 lagging p.f

$$V.R = \frac{I_1 \left[R_{01} \cos \theta_{p.f} \pm X_{01} \sin \theta_{p.f} \right]}{V_1} \times 100\%$$
$$= \frac{5 \left[9.64(0.8) + 21.32(0.6) \right]}{2000} \times 100\%$$
$$= \underline{5.12\%}$$

Example

 A short circuit test was performed at the secondary side of 10kVA, 240/100V transformer. Determine the voltage regulation at 0.8 lagging power factor if

Solution

Check:

$$I_{FL_2} = \frac{VA}{V} = \frac{10000}{100} = 100A$$
$$I_{FL_2} = I_{sc},$$

Hence, we can use short-circuit method

$$V.R = \frac{V_{sc} \cos\left(\theta_{sc} \mp \theta_{p.f}\right)}{V_2} \times 100\%$$

Example 7 (Cont.)

$$\begin{split} V.R &= \frac{V_{sc} \cos\left(\theta_{sc} \mp \theta_{p.f}\right)}{V_2} \times 100\% \\ Given \ p.f &= 0.8 \\ Hence, \theta_{p.f} &= \cos^{-1} 0.8 = \underline{36.87^o} \\ Know that, \end{split}$$

$$P_{sc} = V_{sc}I_{sc}\cos\theta_{sc}$$
$$\theta_{sc} = \cos^{-1}\left(\frac{P_{sc}}{V_{sc}I_{sc}}\right)$$
$$= \cos^{-1}\left(\frac{240}{(18)(100)}\right) = \underline{82.34^{\circ}}$$

$$V.R = \frac{18\cos(82.34^{\circ} - 36.87^{\circ})}{100} \times 100\%$$
$$= \underline{12.62\%}$$

Example

8. The following data were obtained in test on 20kVA 2400/240V, 60Hz transformer.

V_{sc} =72V I_{sc} =8.33A P_{sc}=268W P_{oc}=170W

The measuring instrument are connected in the primary side for short circuit test. Determine the voltage regulation for 0.8 lagging p.f. (use all 3 methods), full load efficiency and half load efficiency.

$$V.R = \frac{V_{sc} \cos\left(\theta_{sc} \mp \theta_{p.f}\right)}{V_2} \times 100\%$$

Given p. f = 0.8
Hence, $\theta_{p.f} = \cos^{-1} 0.8 = \underline{36.87^o}$
Know that,
$$P_{sc} = V_{sc} I_{sc} \cos \theta_{sc}$$
$$\theta_{sc} = \cos^{-1} \left(\frac{P_{sc}}{V_{sc} I_{sc}}\right)$$
$$= \cos^{-1} \left(\frac{268}{(72)(8.33)}\right) = \underline{62}$$
$$Z_{sc} = \frac{V_{sc}}{I_{sc}} = \frac{72}{8.33} = \underline{8.64\Omega}$$

 $\therefore Z_{sc} = 8.64 \angle 63.4^{\circ} = \underline{3.86 + j7.72} = R_{01} + jX_{01} \text{ because connected to primary side.}$

 $.4^{\circ}$

Example 8 (Cont.)
1. Short Circuit method,
$$V.R = \frac{V_{sc} \cos(\theta_{sc} \mp \theta_{p.f})}{V_1} \times 100\%$$

 $V.R = \frac{72 \cos(63.4^{\circ} - 36.87^{\circ})}{2400} \times 100\% = 2.68\%$
2. Equivalent circuit, $V.R = \frac{I_1 [R_{01} \cos \theta_{p.f} \pm X_{01} \sin \theta_{p.f}]}{V_1} \times 100\%$
 $\frac{20000}{2400} [3.86(0.8) + 7.72(0.6)]}{2400} \times 100\% = 2.68\%$

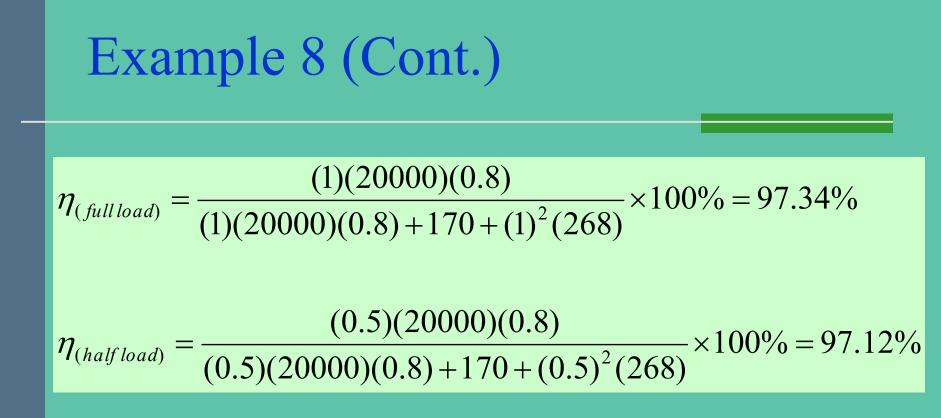
3. Basic Defination,

$$V_{1} = I_{1}Z_{01} + aV_{2}$$

$$2400 \angle 0^{\circ} = \left(\frac{20000}{2400} \angle -36.87^{\circ}\right) \left(8.64 \angle 63.4^{\circ}\right) + \left(\frac{2400}{240}\right)V_{2}$$

 $V_2 = 233.58 \angle 0.79^{\circ} V$

$$V.R = \frac{V_{NL} - V_{FL}}{V_{NL}} \times 100\%$$
$$= \frac{240 - 233.58}{240} \times 100\%$$
$$= \underline{2.68\%}$$



Measurement on Transformer

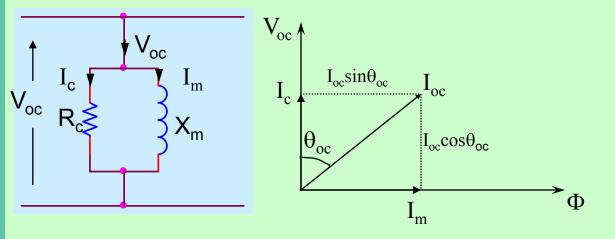
There are two test conducted on transformer.

- i. Open Circuit Test
- **ii.** Short Circuit test
- The test is conducted to determine the parameter of the transformer.
- Open circuit test is conducted to determine magnetism parameter, R_c and X_m.
- Short circuit test is conducted to determine the copper parameter depending where the test is performed. If performed at primary, hence the parameters are R_{01} and X_{01} and vice-versa.

Open-Circuit Test

Measurement are at high voltage side

From a given test parameters,



$$P_{oc} = V_{oc} I_{oc} \cos \theta_{oc}$$
$$\theta_{oc} = \cos^{-1} \left(\frac{P_{oc}}{V_{oc} I_{oc}} \right)$$

Hence,

$$I_{c} = I_{oc} \cos \theta_{oc}$$
$$I_{m} = I_{oc} \sin \theta_{oc}$$

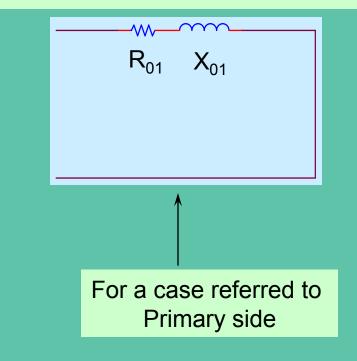
Then, R_c and X_m ,

Note:

If the question asked parameters referred to Low voltage side, the parameters (R_c and X_m) obtained need to be referred to low voltage side $R_c = \frac{V_{oc}}{I_c}, X_m = \frac{V_{oc}}{I_m}$

Short-Circuit Test

- Measurement are at low voltage side
- If the given test parameters are taken on primary side, R₀₁ and X₀₁ will be obtained. Or else, vice-versa.



$$P_{sc} = V_{sc}I_{sc}\cos\theta_{sc}$$
$$\theta_{sc} = \cos^{-1}\left(\frac{P_{sc}}{V_{sc}I_{sc}}\right)$$
$$Hence,$$
$$Z_{01} = \frac{V_{sc}}{I_{sc}} \angle \theta_{sc}$$
$$Z_{01} = R_{01} + jX_{01}$$

Example

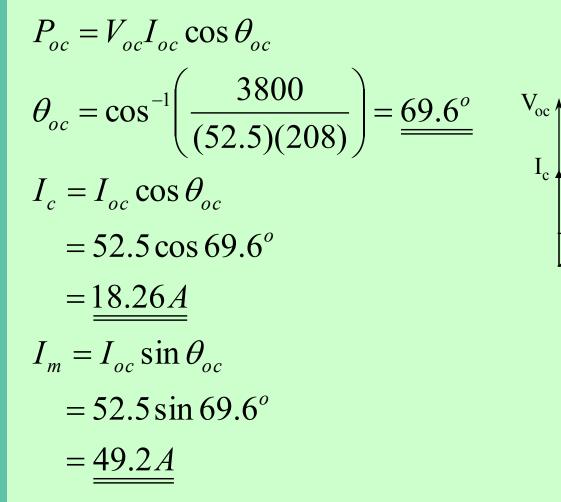
9. Given the test on 500kVA 2300/208V are as follows:

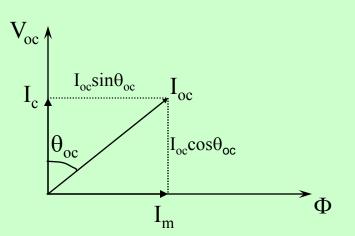
 $P_{oc} = 3800W$ $P_{sc} = 6200W$ $V_{oc} = 208V$ $V_{sc} = 95V$ $I_{oc} = 52.5A$ $I_{sc} = 217.4A$

Determine the transformer parameters and draw equivalent circuit referred to high voltage side. Also calculate appropriate value of V_2 at full load, the full load efficiency, half load efficiency and voltage regulation, when power factor is 0.866 lagging.

[1392Ω, 517.2Ω, 0.13Ω, 0.44Ω, 202V, 97.74%, 97.59%, 3.04%]

From Open Circuit Test,





Since V_{oc} =208V \therefore all reading are taken on the secondary side

$$R_{c} = \frac{V_{oc}}{I_{c}} = \frac{208}{18.26} = \underline{11.39\Omega}$$
$$X_{m} = \frac{V_{oc}}{I_{m}} = \frac{208}{49.21} = \underline{4.23\Omega}$$

Parameters referred to high voltage side,

$$R_{c}' = R_{c} \left(\frac{E_{1}}{E_{2}}\right)^{2} = 11.39 \left(\frac{2300}{208}\right)^{2} = \underline{1392\Omega}$$
$$X_{m}' = X_{m} \left(\frac{E_{1}}{E_{2}}\right)^{2} = 4.23 \left(\frac{2300}{208}\right)^{2} = \underline{517.21\Omega}$$

From Short Circuit Test,

First, check the I_{sc}

$$I_{FL_1} = \frac{VA}{V_1} = \frac{500 \times 10^3}{2300} = \underline{217.4A}$$

Since $I_{FL1} = I_{sc}$, \therefore all reading are actually taken on the primary side

$$P_{sc} = V_{sc}I_{sc}\cos\theta_{sc}$$

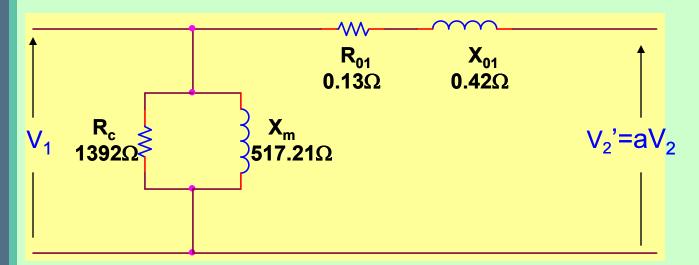
$$\theta_{sc} = \cos^{-1}\left(\frac{6200}{(95)(217.4)}\right) = \underline{72.53^{\circ}}$$

$$Z_{01} = \left(\frac{V_{sc}}{I_{sc}}\right) \angle \theta_{sc}$$

$$= \left(\frac{95}{217.4}\right) \angle 72.53^{\circ} = 0.44 \angle 72.53^{\circ}$$

$$= 0.13 + j0.42\Omega$$

Equivalent circuit referred to high voltage side,



Efficiency,η

$$\eta_{FL} = \left[\frac{VA\cos\theta}{VA\cos\theta + P_{sc} + P_{oc}}\right] \times 100\%$$
$$= \left[\frac{(500 \times 10^3)(0.866)}{(500 \times 10^3)(0.866) + 6200 + 3800}\right] \times 100\%$$
$$= \underline{97.74\%}$$

$$\eta_{\frac{1}{2}L} = \left[\frac{nVA\cos\theta}{nVA\cos\theta + n^2P_{sc} + P_{oc}}\right] \times 100\%$$
$$= \left[\frac{(0.5)(500 \times 10^3)(0.866)}{(0.5)(500 \times 10^3)(0.866) + (6200)(0.5)^2 + 3800}\right] \times 100\%$$
$$= \underline{97.59\%}$$

Voltage Regulation,

$$V.R = \left[\frac{V_{sc}\cos\left[\theta_{sc} - \theta_{pf}\right]}{E_1}\right] \times 100\%$$
$$= \left[\frac{(95)\cos\left[72.53 - 30\right]}{2300}\right] \times 100\%$$
$$= \underline{3.04\%}$$