RADIATION FROM A SHORT
ELECTRIC DIPOLE



2.16 SHORT ELECTRIC DIPOLE(ORHERTZIANEL POL

A linear antenna can be regarded as a large number of very mﬁmmnnallyslu'tod
connected in series (end to end) and hence it is important first to consider the rad
properties of such short conductors. A short linear conductor is so short that ¢
may be assumed to be constant throughout its length as shown in Fig. 2.18. Thi
of short linear conductor is known as “Short dipole” or “Hertzian dipole™, afy
German physicist Heinrich Hertz.

Definition. Hertzian dipole is a hypothetical antenna and is defined as a
isolated conductor carrying uniform alternating current.
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Fig. 2.18. A short dipole and its equivalent
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A physical equivalent of short dipole is shown in Fig. 2.18(b) in which two ends of
the dipole are represented by two spheres where charges are accumulated. If [ be the
current then it is related to charge as

[=== .(2.161)

The electrically short dipole is theoretically the simplest and the most important
structure. The term short dipole is commonly applied to any dipole no longer than
0.1A. A short dipole that does not havle a uniform current is known as Elemental

dipole and is generally shorter than i'(")“th A Elemental di_pdle are also known as

elementary dipole, elementary doublet and Hertzian dipole.

When the length of the short dipole is vanishingly small, t-hé term infinitesimal

dipole is used. If dL be the infinitesimally small length and I be the current, then
7 df is called as current element. o

Since [=[ sinot or I cOs Qf | | .(2.1620q)
Current element dL = I, dL sin of or I, dL cos ot .(2.162b)
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Since [=1I sinaf or Icos wf | - .(2.162a)
Current element JdL = I, dL sin wr or 1, dL cos o .(2.162b)

Initially, a short dipole is in neutral condition. When a current (flow of electric
charge) starts to flow in one direction, one half of the dipole acquires an excess charge
and the other half a deficit, thereby causing a potential difference (voltage) between the
two halvs of the dipole. When the current changes its direction this charge unbalance
will first be neutralized and then changed.

Thus, the oscillating current will result in an oscillating voltage as well or vice-
versa. If the current oscillation is sinusoidal, the voltage oscillation will also be
sinusoidal and approximately 90° lagging the current in phase angle, i.e., a short
dipole is capacitive in nature from current voltage relation point of view.

As electric charge oscillates in such short dipoles, they may also be called as
oscillating electric'dipoles as against oscillating magnetic dipoles.
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2.18 RADIATION FROM A SMALL CURRENT ELEMENT

An alternating current element or oscillating electric dipole possesses electromagnet
field and now we will find these fields everywhere around in free space using d
concept of retarded vector potential. Let the elemental length (dL) of the wire |
placed at the origin of the spherical co-ordinate and / be current flowing through it:
shown in Fig. 2.20. The length is so short that current is constant along the length.

Tﬂf:f; dl cosot
I=1,cos wt
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Fig. 2.20. Current element (/dL) at the origin of



2,18.1 Magnetic Field Components
To find the electromagnetlc field at any arbitrary point P (r, 8, 0), irst we wil cal

the vector potential A ‘The general expression for magnetlc vector potential is gr
by

o 5
e, A== —=d .0

- ,.
The vector potential A is acting along z direction so it will have only z compong
e.g, 4, retarded in time by (r/c) seconds. Since the current element is excited by

current /= 1y cos a, $0 J;]) dvin Eqn. (2.169) may be replaced by I, this
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The vector potential A is acting along z direction so it will have only z compom
e.g., 4, retarded in time by (r/c) seconds. Since the current element is excited by!

current /= [, cos @, S0 J; T dv in Eqn. (2.169) may'be replaced by I dl, thus
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Now the magnetic field intensity H is obtained from the magnetic vector potential.
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As field is symmetrical in X-Y plane and so, — =0. From Figs, 2.20 and 2.21 i
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_>
s seen that components of A are

L
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A, = | . AL1T)
Ar 4,05 § -
d,=-4,5m0

where 4_is given by Eqn. (2.170),




Fig. 2.21. Resolution of vector potential at point P (r, 9, ¢) of Fig. 2.20.

Now from (V x 4) in its polar component and using eqn. (2.172), we get

-
(Vx A),=pH=0 ie,

- .
(Vx A)y=pH,=0 ie,

H =0

.(2.173a)

L2173h)



rlors

- 1| @ 0A,
and (V x A)(p= T(Aa""‘“a”e—ﬂzuﬂ

I
rlor

or i H(p =
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2.18.2 Electric Field Components
To calculate the components of E (£, E, Eq,) we will use Maxwell’s equatiom,
- -
Vx'ﬁ:-@-waﬁE o [-:i))=e'
Ot ol |




Now writing the above equation in its components form we get

.e,%f—"- =(Vx }), = rs:ne[ (H, smB)-—-%(HB)} -(2177)

9?-;7(”- = (V x ﬁ)(p - E;(Har)-%%-J (2.177¢)
Putting Eqn. (2.173) (a, b) into egn. (2.177), we get I

%’- = (V x H)f rsilnﬂ{ai) (H, sin(&))} . (2.178a)
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B = (V x H), = rsine{ae(Hd’sme)} . , (2.1784a)

0E, | | 0 |1,dLsin’8( -wsinar, COS MY, —'
: T

Ot rsing | 00 4n

-

: l ~ ,r_ .
SQ__[{_ ) ]OafL< msmcot,Jrcoscot,} (sin’ G)J

o rsin@| 4n | or r
Ea Er _ l IodL< “(I)S]na)tl COS(l)fl }25["60036)
o rsin@| 4n | cr r’

0F, 2]0chose[-msincot, cosmt,J

\ +
ot 4re ! 3

cr r

J‘aE _ 2dLcosb j {—co sin;n ? +cosc30 t'}dt |
S 4ne et




_ UydLeosd| +asino t;, sinot,
dne | crto or’ ]
_ UdLeosB[ coso t;, sino 1,

dne | o or'
= 1] 0 ,
= (VX H)= 7__5;(H¢r)_
I 0

or| 4n

1, dLsind

1 dLsing ( 0SNG, coso

t—

I

COS® !,

or| 4n

0SNG /,
+

+
r

i

(2.179)

(2.180)




8% _ LdLsing) & (msinmtl)_ 0 (cosm t,)
ot dnr |Or\ ¢ o\ r |
_.- a ' -
OBy _ Ldlsing| o o) | o 0 hTe0h
—= = +—COS® t,(-——) -
o | 4nr c c p?
. .. 0 ~ ™
0Ey  IdLsing| o D t'(# ;) ~o0S0h
or — = ——COS® 1, ~ — r
Ot dmer ’ r
IdLsing[ o’ [
ja E,= J. gdLsing —(DZ COS® t]—-~(-~o-*smo)tl cosci) NP

4er cr r




IdLsing| o’sinot, © coswt, sinwf,
Ey= - +— +
4ne cor o 0 o
 IdLsin®[ wesinot cosot, sino! ]
Ee == —| T 2 | + 2 | T 3 I (2.'8'
Ane cr cr or |
an — = X =
o E,=0 | .{2.182)

Thus we have calculated all the three components of electric field intensi#

vector E (£, Eg E) given by Eqns. (2.179), (2.180), (2. 18]) Hence, we conc

here that out_of six componentis of eiectromagnenc field (H H and £, E, E "f

only three components e.g., E, Eg and Hy exist in the current element and remaining

components £ , 1, and Hyare everywhere zero.
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Similarly, at a distance  >> A
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Eqn. (2.184, 2.186) constitute the fields present in the radiating wave from @i
current element /, dL cos wt. The geometry of the situation is shown in Fig. 2.22. fi
is tangent to a parallel latitude on a sphere and E is tangent to the meridim
[Fig. 2.22(a)]. They both lie on the spherical surface and for a small area would appea
as a plane wave travelling outward as shown in Fig. 2.22(b). Now taking the ratiow
Eyto H(p, we will get the intrinsic impedance, at point P, which is same as was in cas
of plane wave e.g., | -

—I}; = ce =M, =120 from eqn. (2.185) ...(2.]‘
a 4

DIRECTION OF :

PROPAGATION

L, dl cos et

>Y

(a) Radiation from current element /,dL cos ¢ | (b) Spherical wave from the dipole
| in shape



Fig. 2.22

2.18.4 Distance at which Induction and Radiation Fields are Equal

As the distance from the current element increases, both induction and radiation fields
emerge and start decreasing. Since induction field varies inversely as square of the

- distance ( ]2) so it diminishes rapidly and hence is important'-hear the c'ond'uctor'
| but the radiation field which varles inversely as distance (’ €. r) dn‘mmshes relatwely;
~ less rap:dly and i IS in position to propagate to a larger distance.. '

| However a distance reaches from the conductor at_ wh:ch both mducnon and .
radiation fields become equal and the particular dlstanee depends on the wavelength
(or frequency) used. ' o - -

| The two ﬁelds wﬂl thus, have equal amplrtude at that pamcular d:stance Thus,
from eqn Q2. 176) - - - |

o I, dL sin® ( cosw o
- lnidl_lction. field = -2 i cosczo I) ..(2.189a)
- 41 \ r o
R I, dL sfn-_@_"_ msinmt) | o
_Radlatl_on .fie.ld = ar \ or - (2.1 89b)




 distance (; e. ._]5.) SO it di-minishes -rap-id'ly- and hence is irhp’ortant--near the -c'onductor'
| but the radiation fi eld which varles mversely as distance (’ €. r) dxmimshes relatwely;-

less rapxdly and | is in position to propagate to a larger distance.

However a dlstance reaches from the conductor at. Wthh both mductlon and )

| radlatlon fields become equal and the particular dlstance depends on the wavelength
(or frequency) used. a - e

~ The two ﬁelds wﬂl thus, have equal amphtude at that partlcular dlstance Thus,
from eqn 2. 176) - - )
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The distance at which both inc uction and radiation fields are equal 1s obtained by
taking modulus of eqn. (2.189a and b) and equating the amplitudes of both fields
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r=0159 % . o L(2190)

Hence, at a distance of approximately 1/6th wavelength from the current element
the two fields are equal. Beyond this distance radiation field predominates while before
this induction field and after a considerable distance beyond /6 induction field vanishes
altogether and radiation field contribute significantly to radio wave propagation,

Radiution pattern of a Current Element or Elemental Dipole
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Therefore, it is observed.



Eqn. (2.184, 2.186) constitute the fields present in the radiating wave from @i
current element /, dL cos wt. The geometry of the situation is shown in Fig. 2.22. fi
is tangent to a parallel latitude on a sphere and E is tangent to the meridim
[Fig. 2.22(a)]. They both lie on the spherical surface and for a small area would appea
as a plane wave travelling outward as shown in Fig. 2.22(b). Now taking the ratiow
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(a) Radiation from current element /,dL cos ¢ | (b) Spherical wave from the dipole
| in shape



1. Both Ee and H, are in time phase in far field as it has the dimension of pure
: __;reSIStance | :

28 o, =120 =377 Q

2. ‘Both the components, £, and H,, are proportional to sin 0.

3. The pattern is independent of ¢. Thxs leads us to conclude that the !
‘is doughnut shaped (figure of eight) about the axis of thg m
(Fig. 2.23). The maximum is along perpendicular to the axis (sin 90° = l]
_and the minimum (0) is along the axis of the dipole. - 3

Fig. 2.23. Radiatoin pattern of the elemental dipole

4. H, is tangent to a parallel latitude on a sphere and E, is tangent to th
mendlan They both lie on the spherical surface and for a small ares
approximates to a plane wave travelling outward.



