
COMPUTER ORGANIZATION

INDEX

UNIT-II PPT SLIDES
Srl. No. Module as per Session planner Lecture No. PPT Slide No.

1. Register Transfer language

2. Register Transfer Bus and memory transfers

3. Arithmetic Micro-operations

4. Logic micro operations

5. Shift micro operations

6. Arithmetic logic shift unit

7. Instruction codes

8. Computer registers

9. Computer instructions

10. Instruction cycle

11. Reference Instructions

12. Input-output and Interrupt

13. STACK organization

14. Instruction formats

15. Addressing modes

16. DATA Transfer and manipulation

17. Program control

18. Reduced Instruction Set Computer

REGISTER TRANSFER LANGUAGE

• Combinational and sequential circuits can be used to
create simple digital systems.

• These are the low-level building blocks of a digital
computer.

• Simple digital systems are frequently characterized in
terms of
– the registers they contain, and
– the operations that they perform.

• Typically,
– What operations are performed on the data in the registers
– What information is passed between registers

MICROOPERATIONS (1)

• The operations executed on data stored in
registers are called microoperations.

• Examples of microoperations
– Shift
– Load
– Clear
– Increment
– Count

MICROOPERATION (2)

An elementary operation performed (during one clock
pulse), on the information stored in one or more registers.

R  f(R, R)

f: shift, load, clear, increment, add, subtract, complement,
and, or, xor, …

ALU
(f)

Registers
(R)

1 clock cycle

Register Transfer Language

INTERNAL HARDWAREORGANIZATION OF A DIGITAL SYSTEM

- Set of registers it contains and their function

- The sequence of microoperations performed on the
binary information stored in the registers

- Control signals that initiate the sequence of
microoperations (to perform the functions)

• Definition of the internal hardware organization of a computer

REGISTER TRANSFER LANGUAGE
• The symbolic notation used to describe the

microoperation transfers among registers is
called a Register transfer language.

• Register transfer language
– A symbolic language
– A convenient tool for describing the internal

organization of digital computers
– Can also be used to facilitate the design process of

digital systems.

Register Transfer
• Registers are designated by capital letters, sometimes

followed by numbers (e.g., A, R13, IR).
• Often the names indicate function:

– MAR - memory address register
– PC - program counter
– IR - instruction register

• Information transfer from one register to another is
designated in symbolic form by means of a replacement
operator.

R2  R1

– In this case the contents of register R2 are copied (loaded) into
register R1 and contents of R1 remains same.

R1

Register R

Numbering of bits

Showing individual bits

Subfields (Divided into two parts)

PC(H) PC(L)
15 8 7 0

Block diagram of a register

7 6 5 4 3 2 1 0

R2
15 0

• Often we want the transfer to occur only under
a predetermined control condition.

if (p=1) then (R2  R1)
where p is a control signal generated in the

control section.
• In digital systems, this is often done via a

control signal, called a control function
– If the signal is 1, the action takes place

• This is represented as:
P: R2  R1

Which means “if P = 1, then load the contents
of register R1 into register R2”, i.e., if (P = 1)
then (R2  R1)

HARDWARE IMPLEMENTATION OF CONTROLLED
TRANSFERS

Implementation of controlled transfer
P: R2 R1

Block diagram

Timing diagram

Clock

Transfer occurs here

R2

R1

Control
Circuit

LoadP

n

Clock

Load

t t+1

• The same clock controls the circuits that generate the control function
and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

SIMULTANEOUS OPERATIONS

• If two or more operations are to occur
simultaneously, they are separated
with commas

P: R3  R5, MAR  IR

• Here, if the control function P = 1, load
the contents of R5 into R3, and at the
same time (clock), load the contents of
register IR into register MAR

BASIC SYMBOLS FOR REGISTER
TRANSFERS

Capital letters Denotes a register MAR, R2
& numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2  R1
Colon : Denotes termination of control function P:
Comma , Separates two micro-operations A  B, B  A

Symbols Description Examples

BUS AND MEMORY TRANSFERS
Bus is a path(of a group of wires) over which information is
transferred, from any of several sources to any of several destinations.

From a register to bus: BUS  R

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Register A Register B Register C Register D

B C D1 1 1

4 x1
MUX

B C D2 2 2

4 x1
MUX

B C D3 3 3

4 x1
MUX

B C D4 4 4

4 x1
MUX

4-line bus

x
y

select

0 0 0 0

Register A Register B Register C Register D

Bus lines

Bus and Memory Transfers

TRANSFER FROM BUS TO A DESTINATION
REGISTER

Three-State Bus Buffers

Bus line with three-state buffers

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4
Decoder

Load

D0 D1 D2 D3z
w

Select E (enable)

Output Y=A if C=1
High-impedence if C=0Normal input A

Control input C

Select
Enable

0
1
2
3

S0
S1

A0
B0
C0
D0

Bus line for bit 0

Bus and Memory Transfers

BUS TRANSFER IN RTL
Bus and Memory Transfers

• Depending on whether the bus is to be
mentioned explicitly or not, register transfer
can be indicated as either

or

• In the former case the bus is implicit, but in
the latter, it is explicitly indicated

R2 R1

BUS R1, R2  BUS

MEMORY (RAM)
Bus and Memory Transfers

• Memory (RAM) can be thought as a sequential circuits
containing some number of registers

• These registers hold the words of memory
• Each of the r registers is indicated by an address
• These addresses range from 0 to r-1
• Each register (word) can hold n bits of data
• Assume the RAM contains r = 2k words. It needs the following

– n data input lines
– n data output lines
– k address lines
– A Read control line
– A Write control line

data input lines

data output lines

n

n

k
address lines

Read

Write

RAM
unit

MEMORY TRANSFER Bus and Memory Transfers

• Collectively, the memory is viewed at the register
level as a device, M.

• Since it contains multiple locations, we must specify
which address in memory we will be using

• This is done by indexing memory references
• Memory is usually accessed in computer systems

by putting the desired address in a special register,
the Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the
MAR get sent to the memory unit’s address lines

AR Memory
unit

Read

Write

Data inData out

M

MEMORY READ
Bus and Memory Transfers

• To read a value from a location in memory
and load it into a register, the register transfer
language notation looks like this:

• This causes the following to occur
– The contents of the MAR get sent to the memory

address lines
– A Read (= 1) gets sent to the memory unit
– The contents of the specified address are put on

the memory’s output data lines
– These get sent over the bus to be loaded into

register R1

R1  M[MAR]

MEMORY WRITE
Bus and Memory Transfers

• To write a value from a register to a location
in memory looks like this in register transfer
language:

• This causes the following to occur
– The contents of the MAR get sent to the memory

address lines
– A Write (= 1) gets sent to the memory unit
– The values in register R1 get sent over the bus to

the data input lines of the memory
– The values get loaded into the specified address

in the memory

M[MAR]  R1

SUMMARY OF R. TRANSFER
MICROOPERATIONS

Bus and Memory Transfers

A  B Transfer content of reg. B into reg. A
AR DR(AD) Transfer content of AD portion of reg. DR into reg. AR
A  constant Transfer a binary constant into reg. A
ABUS  R1, Transfer content of R1 into bus A and, at the same time,
R2 ABUS transfer content of bus A into R2
AR Address register
DR Data register
M[R] Memory word specified by reg. R
M Equivalent to M[AR]
DR  M Memory read operation: transfers content of

memory word specified by AR into DR
M  DR Memory write operation: transfers content of

DR into memory word specified by AR

ARITHMETIC MICROOPERATIONS
Computer system microoperations are of four types:

1. Register transfer microoperations transfer binary
information from one register to another

2. Arithmetic microoperations perform arithmetic
operations on numeric data stored in registers.

3. Logic microoperations perform bit manipulation
operations on non numeric data stored in
registers.

4. Shift microoperations perform shift operations on
data stored in registers.

ARITHMETIC MICROOPERATIONS

Table: Arithmetic Micro-Operations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3
R3  R1 - R2 Contents of R1 minus R2 transferred to R3
R2  R2’ Complement the contents of R2
R2  R2’+ 1 2's complement the contents of R2 (negate)
R3  R1 + R2’+ 1 subtraction
R1  R1 + 1 Increment
R1  R1 - 1 Decrement

• The basic arithmetic microoperations are
– Addition
– Subtraction
– Increment
– Decrement

• The additional arithmetic microoperations are
– Add with carry
– Subtract with borrow
– Transfer/Load
– etc. …

BINARY ADDER / SUBTRACTOR / INCREMENTER

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

Binary Adder-Subtractor

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

Binary Incrementer

HA
x y

C S

A0 1

S0

HA
x y

C S

A1

S1

HA
x y

C S

A2

S2

HA
x y

C S

A3

S3C4

Binary Adder

ARITHMETIC CIRCUIT

S1
S0
0
123

4x1
MUX

X0

Y0

C0

C1
D0FA

S1
S0
0
123

4x1
MUX

X1

Y1

C1

C2
D1FA

S1
S0
0
123

4x1
MUX

X2

Y2

C2

C3
D2FA

S1
S0
0
123

4x1
MUX

X3

Y3

C3

C4
D3FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0S1Cin

S1 S0 Cin Y Output Microoperation
0 0 0 B D = A + B Add
0 0 1 B D = A + B + 1 Add with carry
0 1 0 B’ D = A + B’ Subtract with borrow
0 1 1 B’ D = A + B’+ 1 Subtract
1 0 0 0 D = A Transfer A
1 0 1 0 D = A + 1 Increment A
1 1 0 1 D = A - 1 Decrement A
1 1 1 1 D = A Transfer A

LOGIC MICROOPERATIONS
• It specifies binary operations on the strings of

bits stored in registers
– Logic microoperations are bit-wise operations, i.e.,

they work on the individual bits of data
– useful for bit manipulations on binary data
– useful for making logical decisions based on the bit

value

• There are, in principle, 16 different logic
functions that can be defined over two binary
input variables

0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

A B F0 F1 F2 … F13 F14 F15

LIST OF LOGIC MICROOPERATIONS
• List of Logic Microoperations

- 16 different logic operations with 2 binary vars.
- n binary vars → functions2 2 n

• Truth tables for 16 functions of 2 variables and the
corresponding 16 logic micro-operations

Boolean
Function

Micro-
Operations Namex 0 0 1 1

y 0 1 0 1

Logic Microoperations

0 0 0 0 F0 = 0 F  0 Clear
0 0 0 1 F1 = xy F  A  B AND
0 0 1 0 F2 = xy' F  A  B’
0 0 1 1 F3 = x F  A Transfer A
0 1 0 0 F4 = x'y F  A’ B
0 1 0 1 F5 = y F  B Transfer B
0 1 1 0 F6 = x  y F  A  B Exclusive-OR
0 1 1 1 F7 = x + y F  A  B OR
1 0 0 0 F8 = (x + y)' F  A  B)’ NOR
1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR
1 0 1 0 F10 = y' F  B’ Complement B
1 0 1 1 F11 = x + y' F  A  B
1 1 0 0 F12 = x' F  A’ Complement A
1 1 0 1 F13 = x' + y F  A’ B
1 1 1 0 F14 = (xy)' F  (A  B)’ NAND
1 1 1 1 F15 = 1 F  all 1's Set to all 1's

HARDWARE IMPLEMENTATION OF LOGIC
MICROOPERATIONS

0 0 F = A  B AND
0 1 F = AB OR
1 0 F = A  B XOR
1 1 F = A’ Complement

S1 S0 Output -operation
Function table

B
A

S
S

F

1
0

i

i
i 0

1

2

3

4 X 1
MUX

Select

APPLICATIONS OF LOGIC MICROOPERATIONS

• Logic microoperations can be used to manipulate
individual bits or a portions of a word in a register

• Consider the data in a register A. In another register,
B, is bit data that will be used to modify the contents of
A

• Selective-set A  A + B
– Selective-complement A  A  B
– Selective-clear A  A • B’
– Mask (Delete) A  A • B
– Clear A  A  B
– Insert A  (A • B) + C
– Compare A  A  B
– . . .

SELECTIVE SET

• In a selective set operation, the bit pattern in B
is used to set certain bits in A

1 1 0 0 At

1 0 1 0 B
1 1 1 0 At+1 (A  A + B)

• If a bit in B is set to 1, that same position in A
gets set to 1, otherwise that bit in A keeps its
previous value

SELECTIVE COMPLEMENT

• In a selective complement operation, the bit
pattern in B is used to complement certain bits
in A

1 1 0 0 At

1 0 1 0 B
0 1 1 0 At+1 (A  A  B)

• If a bit in B is set to 1, that same position in A
gets complemented from its original value,
otherwise it is unchanged

SELECTIVE CLEAR

• In a selective clear operation, the bit pattern in
B is used to clear certain bits in A

1 1 0 0 At

1 0 1 0 B
0 1 0 0 At+1 (A  A  B’)

• If a bit in B is set to 1, that same position in A
gets set to 0, otherwise it is unchanged

MASK OPERATION

• In a mask operation, the bit pattern in B is
used to clear certain bits in A

1 1 0 0 At

1 0 1 0 B
1 0 0 0 At+1 (A  A  B)

• If a bit in B is set to 0, that same position in A
gets set to 0, otherwise it is unchanged

CLEAR OPERATION

• In a clear operation, if the bits in the same
position in A and B are the same, they are
cleared in A, otherwise they are set in A

1 1 0 0 At

1 0 1 0 B
0 1 1 0 At+1 (A  A  B)

INSERT OPERATION
• An insert operation is used to introduce a

specific bit pattern into A register, leaving the
other bit positions unchanged

• This is done as
– A mask operation to clear the desired bit

positions, followed by
– An OR operation to introduce the new bits

into the desired positions

– Example
• Suppose you wanted to introduce 1010 into the low order

four bits of A: 1101 1000 1011 0001 A (Original)
1101 1000 1011 1010 A (Desired)

• 1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 Mask
1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits

1101 1000 1011 1010 A (Desired)

SHIFT MICROOPERATIONS
• Shift microoperations are used for serial transfer of data.
• The information transferred through the serial input

determines the type of shift. There are three types of shifts
– Logical shift
– Circular shift
– Arithmetic shift

Serial
input

• A right shift operation

• A left shift operation Serial
input

LOGICAL SHIFT

• In a logical shift the serial input to the shift is a 0.
• A right logical shift operation:

• A left logical shift operation:

• In a Register Transfer Language, the following
notation is used
– shl for a logical shift left
– shr for a logical shift right
– Examples:

• R2  shr R2
• R3  shl R3

0

0

CIRCULAR SHIFT
• In a circular shift the serial input is the bit that is

shifted out of the other end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil for a circular shift left
– cir for a circular shift right
– Examples:

• R2  cir R2
• R3  cil R3

ARITHMETIC SHIFT
• An arithmetic shift is meant for signed binary numbers (integer)
• An arithmetic left shift multiplies a signed number by two
• An arithmetic right shift divides a signed number by two
• The main distinction of an arithmetic shift is that it must keep

the sign of the number the same as it performs the
multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation:

0

sign
bit

sign
bit

ARITHMETIC SHIFT

• An left arithmetic shift operation must be
checked for the overflow

0

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl for an arithmetic shift left
– ashr for an arithmetic shift right
– Examples:

• R2  ashr R2
• R3  ashl R3

sign
bit

HARDWARE IMPLEMENTATION OF SHIFT
MICROOPERATIONS

S
0
1

H0MUX

S
0
1

H1MUX

S
0
1

H2MUX

S
0
1

H3MUX

Select 0 for shift right (down)
1 for shift left (up)Serial

input (IR)

A0

A1

A2

A3

Serial
input (IL)

ARITHMETIC LOGIC SHIFT UNIT

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A  B AND
0 1 0 1 X F = A B OR
0 1 1 0 X F = A  B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

Arithmetic
Circuit

Logic
Circuit

C

C 4 x 1
MUX

Select

0
1
2
3

F

S3
S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

BASIC COMPUTER ORGANIZATION AND
DESIGN• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

Instruction Codes
• Every different processor type has its own design (different registers, buses,

microoperations, machine instructions, etc)
• Modern processor is a very complex device
• It contains

– Many registers
– Multiple arithmetic units, for both integer and floating point calculations
– The ability to pipeline several consecutive instructions to speed

execution
– Etc.

• However, to understand how processors work, we will start with a simplified
processor model

• This is similar to what real processors were like ~25 years ago
• M. Morris Mano introduces a simple processor model he calls the Basic

Computer
• We will use this to introduce processor organization and the relationship of

the RTL model to the higher level computer processor

THE BASIC COMPUTER

• The Basic Computer has two components, a
processor and memory

• The memory has 4096 words in it
– 4096 = 212, so it takes 12 bits to select a word in

memory
• Each word is 16 bits long

CPU RAM
0

4095

015

INSTRUCTIONS
Instruction codes

• Program
– A sequence of (machine) instructions

• (Machine) Instruction
– A group of bits that tell the computer to perform a specific

operation (a sequence of micro-operation)
• The instructions of a program, along with any needed data are

stored in memory
• The CPU reads the next instruction from memory
• It is placed in an Instruction Register (IR)
• Control circuitry in control unit then translates the instruction

into the sequence of microoperations necessary to implement it

INSTRUCTION FORMAT
Instruction codes

• A computer instruction is often divided into two parts
– An opcode (Operation Code) that specifies the operation for that

instruction
– An address that specifies the registers and/or locations in memory to

use for that operation
• In the Basic Computer, since the memory contains 4096 (= 212) words, we

needs 12 bit to specify which memory address this instruction will use
• In the Basic Computer, bit 15 of the instruction specifies the addressing

mode (0: direct addressing, 1: indirect addressing)
• Since the memory words, and hence the instructions, are 16 bits long,

that leaves 3 bits for the instruction’s opcode

Opcode Address

Instruction Format

15 14 12 0

I

11

Addressing
mode

ADDRESSING MODES
Instruction codes

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of

the operand), or
– Indirect address: the address in memory of the address in memory of the

data to use

0 ADD 45722

Operand457

1 ADD 30035

1350300

Operand1350

+
AC

+
AC

Direct addressing Indirect addressing

• Effective Address (EA)
– The address, that can be directly used without

modification to access an operand for a
computation-type instruction, or as the target
address for a branch-type instruction

PROCESSOR REGISTERS
Instruction codes

• A processor has many registers to hold instructions, addresses, data, etc
• The processor has a register, the Program Counter (PC) that holds the

memory address of the next instruction to get
– Since the memory in the Basic Computer only has 4096 locations, the

PC only needs 12 bits
• In a direct or indirect addressing, the processor needs to keep track of

what locations in memory it is addressing: The Address Register (AR) is
used for this
– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect addressing, it is
placed in the Data Register (DR). The processor then uses this value as
data for its operation

• The Basic Computer has a single general purpose register – the
Accumulator (AC)

PROCESSOR REGISTERS
Instruction codes

• The significance of a general purpose register is that it can be referred to in
instructions
– e.g. load AC with the contents of a specific memory location; store the

contents of AC into a specified memory location
• Often a processor will need a scratch register to store intermediate results or

other temporary data; in the Basic Computer this is the Temporary Register
(TR)

• The Basic Computer uses a very simple model of input/output (I/O)
operations
– Input devices are considered to send 8 bits of character data to the

processor
– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an input
device

• The Output Register (OUTR) holds an 8 bit character to be send to an output
device

COMPUTER REGISTERS

List of BC Registers
DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction Register Holds instruction code
PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data
INPR 8 Input Register Holds input character
OUTR 8 Output Register Holds output character

Registers

Registers in the Basic Computer

11 0
PC

15 0
IR

15 0
TR

7 0
OUTR

15 0
DR

15 0
AC

11 0
AR

INPR
0 7

Memory
4096 x 16

CPU

COMMON BUS SYSTEM
Registers

• The registers in the Basic Computer are
connected using a bus

• This gives a savings in circuitry over
complete connections between registers

COMMON BUS SYSTEM
Registers

S2
S1
S0

Bus

Memory unit
4096 x 16

LD INR CLR

Address
ReadWrite

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

ACALU
E

INPR

IR
LD

LD INR CLR

TR

OUTR
LD

Clock

16-bit common bus

7

1

2

3

4

5

6

COMMON BUS SYSTEM
Registers

AR

PC

DR

L I C

L I C

L I C

AC

L I C

ALUE

IR

L

TR

L I C

OUTR LD

INPR
Memory

4096 x 16

Address

Read

Write

16-bit Common Bus
7 1 2 3 4 5 6

S0 S1 S2

COMMON BUS SYSTEM
Registers

• Three control lines, S2, S1, and S0 control which register the bus
selects as its input

• Either one of the registers will have its load signal activated, or the
memory will have its read signal activated
– Will determine where the data from the bus gets loaded

• The 12-bit registers, AR and PC, have 0’s loaded onto the bus in the
high order 4 bit positions

• When the 8-bit register OUTR is loaded from the bus, the data comes
from the low order 8 bits on the bus

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

S2 S1 S0 Register

COMPUTER INSTRUCTIONS
Instructions

• Basic Computer Instruction Format

15 14 12 11 0
I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0
Register operation0 1 1 1

15 12 11 0
I/O operation1 1 1 1

BASIC COMPUTER INSTRUCTIONS
Hex Code

Symbol I = 0 I = 1 Description
AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load AC from memory
STA 3xxx Bxxx Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

Instructions

INSTRUCTION SET COMPLETENESS

• Instruction Types

A computer should have a set of instructions so that the user can
construct machine language programs to evaluate any function
that is known to be computable.

Functional Instructions
- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions
- Data transfers between the main memory

and the processor registers
- LDA, STA

Control Instructions
- Program sequencing and control
- BUN, BSA, ISZ

Input/Output Instructions
- Input and output
- INP, OUT

Instructions

CONTROL UNIT
Instruction codes

• Control unit (CU) of a processor translates from machine
instructions to the control signals for the microoperations that
implement them

• Control units are implemented in one of two ways
• Hardwired Control

– CU is made up of sequential and combinational circuits to
generate the control signals

• Microprogrammed Control
– A control memory on the processor contains microprograms

that activate the necessary control signals

• We will consider a hardwired implementation of the control unit
for the Basic Computer

TIMING AND CONTROL
Control unit of Basic Computer

Timing and control

Instruction register (IR)
15 14 13 12 11 - 0

3 x 8
decoder

7 6 5 4 3 2 1 0

I
D0

15 14 2 1 0
4 x 16

decoder

4-bit
sequence

counter
(SC)

Increment (INR)
Clear (CLR)
Clock

Other inputs

Control
signals

D

T

T

7

15

0

Combinational
Control

logic

TIMING SIGNALS

Clock
T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC  0

Timing and control

Fetch-Decode-Execute cycle
(typically 3 to 5 stage)

INSTRUCTION CYCLE
• In Basic Computer, a machine instruction is executed in the

following cycle:
1. Fetch an instruction from memory
2. Decode the instruction
3. Read the effective address from memory if the instruction has

an indirect address
4. Execute the instruction

• After an instruction is executed, the cycle starts again at step 1,
for the next instruction

• Note: Every different processor has its own (different)
instruction cycle

FETCH and DECODE
• Fetch and Decode T0: AR PC (S0S1S2=010, T0=1)

T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

S2

S1

S0

Bus

7Memory
unit

Address
Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

Instruction Cycle

DETERMINE THE TYPE OF INSTRUCTION

= 0 (direct)

D'7IT3: AR M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

Instrction Cycle

Start
SC  0

AR  PC
T0

IR  M[AR], PC  PC + 1
T1

AR  IR(0-11), I  IR(15)
Decode Opcode in IR(12-14),

T2

D7
= 0 (Memory-reference)(Register or I/O) = 1

II

Execute
register-reference

instruction
SC  0

Execute
input-output
instruction

SC  0

M[AR]AR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
memory-reference

instruction
SC  0

T4

REGISTER REFERENCE INSTRUCTIONS

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

- D7 = 1, I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

Instruction Cycle

Register Reference Instructions are identified when

r: SC  0
CLA rB11: AC  0
CLE rB10: E  0
CMA rB9: AC  AC’
CME rB8: E  E’
CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)
CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)
INC rB5: AC  AC + 1
SPA rB4: if (AC(15) = 0) then (PC  PC+1)
SNA rB3: if (AC(15) = 1) then (PC  PC+1)
SZA rB2: if (AC = 0) then (PC  PC+1)
SZE rB1: if (E = 0) then (PC  PC+1)
HLT rB0: S  0 (S is a start-stop flip-flop)

MEMORY REFERENCE INSTRUCTIONS

AND to AC
D0T4: DR  M[AR] Read operand
D0T5: AC  AC  DR, SC  0 AND with AC

ADD to AC
D1T4: DR  M[AR] Read operand
D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry in E

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

MR Instructions

Symbol Operation
Decoder Symbolic Description

AND D0 AC  AC  M[AR]
ADD D1 AC  AC + M[AR], E  Cout
LDA D2 AC  M[AR]
STA D3 M[AR]  AC
BUN D4 PC  AR
BSA D5 M[AR]  PC, PC  AR + 1
ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

MEMORY REFERENCE INSTRUCTIONS

Memory, PC after execution

21

0 BSA 135
Next instruction

Subroutine

20
PC = 21

AR = 135

136

1 BUN 135

Memory, PC, AR at time T4

0 BSA 135
Next instruction

Subroutine

20
21

135
PC = 136

1 BUN 135
Memory Memory

LDA: Load to AC
D2T4: DR  M[AR]
D2T5: AC  DR, SC  0

STA: Store AC
D3T4: M[AR]  AC, SC  0

BUN: Branch Unconditionally
D4T4: PC  AR, SC  0

BSA: Branch and Save Return Address
M[AR]  PC, PC  AR + 1

MEMORY REFERENCE
INSTRUCTIONS

MR Instructions

BSA:
D5T4: M[AR]  PC, AR  AR + 1
D5T5: PC  AR, SC  0

ISZ: Increment and Skip-if-Zero
D6T4: DR  M[AR]
D6T5: DR  DR + 1
D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS
MR Instructions

Memory-reference instruction

DR  M[AR] DR  M[AR] DR  M[AR] M[AR]  AC
SC  0

AND ADD LDA STA

AC  AC DR
SC  0

AC  AC + DR
E  Cout
SC  0

AC  DR
SC  0

D T0 4 D T1 4 D T2 4 D T3 4

D T0 5 D T1 5 D T2 5

PC  AR
SC  0

M[AR]  PC
AR  AR + 1

DR  M[AR]

BUN BSA ISZ

D T4 4 D T5 4 D T6 4

DR  DR + 1

D T5 5 D T6 5
PC  AR
SC  0

M[AR]  DR
If (DR = 0)
then (PC  PC + 1)
SC  0

D T6 6



INPUT-OUTPUT AND INTERRUPT

• Input-Output Configuration

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal

serially and with the AC in parallel.
- The flags are needed to synchronize the timing

difference between I/O device and the computer

A Terminal with a keyboard and a Printer

I/O and Interrupt

Input-output
terminal

Serial
communication

interface
Computer
registers and
flip-flops

Printer

Keyboard

Receiver
interface

Transmitter
interface

FGOOUTR

AC

INPR FGI

Serial Communications Path
Parallel Communications Path

PROGRAM CONTROLLED DATA TRANSFER
loop: If FGI = 1 goto loop

INPR  new data, FGI  1

loop: If FGO = 1 goto loop
consume OUTR, FGO  1

-- CPU -- -- I/O Device --

/* Input */ /* Initially FGI = 0 */
loop: If FGI = 0 goto loop

AC  INPR, FGI  0

/* Output */ /* Initially FGO = 1 */
loop: If FGO = 0 goto loop

OUTR  AC, FGO  0

I/O and Interrupt

Start Input

FGI  0

FGI=0

AC  INPR

More
Character

END

Start Output

FGO  0

FGO=0

More
Character

END

OUTR  AC

AC  Data
yes

no

yes

no

FGI=0 FGO=1

yes

yes
no

no

INPUT-OUTPUT INSTRUCTIONS

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

p: SC  0 Clear SC
INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

PROGRAM-CONTROLLED INPUT/OUTPUT
• Program-controlled I/O

- Continuous CPU involvement
I/O takes valuable CPU time

- CPU slowed down to I/O speed
- Simple
- Least hardware

I/O and Interrupt

Input

LOOP, SKI DEV
BUN LOOP
INP DEV

Output

LOOP, LDA DATA
LOP, SKO DEV

BUN LOP
OUT DEV

INTERRUPT INITIATED
INPUT/OUTPUT-

Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,
it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task
it is doing, branches to the service routine to process the data
transfer, and then returns to the task it was performing.

*
IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions
- when cleared, the computer cannot be interrupted

FLOWCHART FOR INTERRUPT CYCLE
R = Interrupt f/f

- The interrupt cycle is a HW implementation of a branch
and save return address operation.

- At the beginning of the next instruction cycle, the
instruction that is read from memory is in address 1.

- At memory address 1, the programmer must store a branch instruction
that sends the control to an interrupt service routine

- The instruction that returns the control to the original
program is "indirect BUN 0"

I/O and Interrupt

Store return address

R =1=0

in location 0
M[0]  PC

Branch to location 1
PC  1

IEN  0
R  0

Interrupt cycleInstruction cycle

Fetch and decode
instructions

IEN

FGI

FGO

Execute
instructions

R  1

=1
=1

=1

=0

=0

=0

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

Register Transfer Statements for Interrupt Cycle
- R F/F  1 if IEN (FGI + FGO)T0T1T2

 T0T1T2 (IEN)(FGI + FGO): R  1

- The fetch and decode phases of the instruction cycle
must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2

- The interrupt cycle :
RT0: AR  0, TR  PC
RT1: M[AR]  TR, PC  0
RT2: PC  PC + 1, IEN  0, R  0, SC  0

After interrupt cycle

0 BUN 1120
0
1

PC = 256
255

1 BUN 0

Before interrupt

Main
Program

1120
I/O

Program

0 BUN 1120
0

PC = 1

256
255

1 BUN 0

Memory

Main
Program

1120
I/O

Program

256

I/O and Interrupt

