
Stored program concept
• Stored-program concept is designed by

Hungarian mathematician John Von Neumann.
• The von Neumann architecture is a design

model for a stored-program digital computer that
uses a processing unit and a single separate
storage structure to hold both instructions and
data.

• A stored-program digital computer is one that
keeps its programmed instructions, as well as its
data, in read-write, random access memory
(RAM).

Design of the von Neumann architecture

CPU

INPUT
OUTPUT

SYSTEM BUS

MAIN
MEMORY

M

STORED
PROGRAMS
AND DATA

Data Instruction

• A von Neumann Architecture computer has five parts: an
arithmetic-logic unit , a control unit , a memory ,
some form of input/output and a system bus that
provides a data path between these parts.

• Role of computer’s main memory M is to store programs
and data as they are being processed by CPU.

• M is RAM
• RAM permits the CPU to read or change its contents via

load or store instructions respectively.
• M is backed with secondary memory that is hard disk

• You store programs and data in a slow-to-
access storage medium (such as a hard disk)
and work on them in a fast-access, volatile
storage medium (RAM).

• The idea behind stored-program concept was to
design a computer that includes an instruction
set architecture and can store in memory a set
of instructions (a program) that details the
computation.

• A stored-program design also lets programs
modify themselves while running

• An instruction set is a list of all the instructions,
and all their variations, that a processor can
execute.

• Instructions include:
• Arithmetic such as add and subtract
• Logic instructions such as and, or, and not
• Data instructions such as move, input, output,

load, and store
• Control flow instructions such as goto, if ...

goto, call, and return

PARALLEL PROCESSING

Levels of

- Job or Program level (user)

- Task or Procedure level (Execution level)

- Inter-Instruction level (Machine Language)

-Intra-Instruction level (Extension I.e. Output)

Execution of Concurrent Events in the computing
process to achieve faster Computational Speed

Flynn’s classification of computers
• Michael J Flynn classified computers on the basis of

multiplicity of instruction stream and data streams in a
computer system.

• It gives how sequence of instructions or data will be
executed upon a single processor

• Instruction stream: is the sequence of instructions as
executed by the machine

• Data Stream is a sequence of data including input, or
partial or temporary result, called by the instruction
Stream.

The four classifications defined by Flynn are based upon the
number of concurrent instruction (or control) and data streams
available in the architecture:

Flynn's taxonomy

Single
Instruction

Multiple
Instruction

Single
Data

SISD MISD

Multiple
Data

SIMD MIMD

• Instructions are decoded by the control unit and then ctrl unit send the
instructions to the processing units for execution.

• Data Stream flows between the processors and memory bi directionally.

SISD COMPUTER SYSTEMS

Control
Unit

Processor
Unit

Memory

Instruction stream

Data stream

Characteristics

- Standard von Neumann machine
- Instructions and data are stored in memory
- One operation at a time

MISD COMPUTER SYSTEMS

M CU P

M CU P

M CU P

•
•
•

•
•
•

Memory

Instruction stream

Data stream

Characteristics

- There is no computer at present that can be
classified as MISD

SIMD COMPUTER SYSTEMS

Control Unit

Memory

Alignment network

P P P• • •

M MM • • •

Data bus

Instruction stream

Data stream

Processor units

Memory modules

Characteristics

- Only one copy of the program exists
- A single controller executes one instruction at a time

MIMD COMPUTER SYSTEMS

Interconnection Network

P M P MP M • • •

Shared Memory

Characteristics

- Multiple processing units

- Execution of multiple instructions on multiple data

Types of MIMD computer systems

- Shared memory multiprocessors

- Message-passing multicomputers

SHARED MEMORY MULTIPROCESSORS

Characteristics
All processors have equally direct access to

one large memory address space

Example systems
Bus and cache-based systems

- Sequent Balance, Encore Multimax
Multistage IN-based systems

- Ultracomputer, Butterfly, RP3, HEP
Crossbar switch-based systems

- Alliant FX/8

Interconnection Network(IN)

• • •

• • •P PP

M MM

Buses,
Multistage IN,
Crossbar Switch

MESSAGE-PASSING MULTICOMPUTER

Characteristics

- Interconnected computers
- Each processor has its own memory, and
communicate via message-passing

Example systems

- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Message-Passing Network

• • •P PP

M M M• • •

Point-to-point connections

Multilevel View Point of A Machine

The Computer Level Hierarchy

Level 0: Digital Logic Level

– This level is where we find digital circuits (the
chips).

– Digital circuits consist of gates and wires.
– These components implement the

mathematical logic of all other levels.
– This level is where we view physical devices

as just switches (On/Off)
– Instead of viewing their physical behavior (i.e.

in terms of voltages and currents) we use two
value logic i.e. 0 (off) and 1(on)

Level 1: Control Level /
Microarchitecture Level

– A control unit decodes and executes
instructions and moves data through the
system.

– Control units can be microprogrammed or
hardwired.

– Computer Architecture is the combination of
microarchitecture and instruction set design.

Hardwired Control
• Hardwired control units consist of hardware that

directly executes machine instructions.

• The control logic is implemented with gates, flip
flops, decoders, and other digital circuits.

• It has the advantage that it can be optimized to
produce a fast mode of operation

• Making any change is difficult

Microprogrammed Control

• Microprogramed control unit is built around a storage unit called
control memory where all control signals are stored in program like
format.

• Control memory stores a set of microprograms which are designed
to implement instruction set.

• Each instruction causes a set of microprogram to be fetched.

• And its control information is extracted in a manner that resembles
the fetching and execution of program from main memory.

• Design changes can be easy by just altering the contents of the
control memory.

A microprogram is a program written in a low-level language that is
implemented by the hardware.

Level 2: Machine Level
– Also known as the Instruction Set Architecture

(ISA) Level.
– Consists of instructions that are particular to

the architecture of the machine.

Instruction Set Architecture (ISA)
• The Instruction Set Architecture (ISA) is the part of the

processor that is visible to the programmer or compiler
writer.

• The ISA serves as the boundary between software and
hardware.

• An instruction set, or instruction set architecture
(ISA), is the part of the computer architecture related to
programming, including the native data types,
instructions, registers, addressing modes, memory
architecture, interrupt and exception handling, and
external I/O.

• An ISA includes a specification of the set of opcodes, the
native commands implemented by a particular CPU
design.

Example

• An operation (ADD) is a part of Instruction set stored in
a memory. It is a binary code that tells computer to
perform ADD operation.

• Control units decodes instructions from the memory.
Then issues a sequence of control signals to initiate
microoperations in internal computer registers

• For every operation code, the control issues
a sequence of microoperations needed for
the hardware implementation of the specified
operation

Level 3: System Software Level

– Controls executing processes on the system.
– Protects system resources.
– Assembly language instructions often pass through

Level 3 without modification.
– Operating System software supervises other

programs
• Controls execution of multiple programs
• Protects system resources. E.g. Memory and I/O devices

– Other utilities
• Compilers, Interpreters, Linkers, Library etc.

Level 4: Assembly Language Level

– Acts upon assembly language produced from
Level 5, as well as instructions programmed
directly at this level.

– Lowest human readable form before dealing
with 1s and 0s (machine language)

– Assembler converts assembly to machine
language

Level 5: High-Level Language Level

– The level with which we interact when we
write programs in languages such as C,
Pascal, Lisp, and Java

– The level allows users to write their own
application with languages such as C, Java
and many more

– High-level languages are easier to read, write,
and maintain

– User at this level sees very little of the lower
level

Level 6: The User Level

– Program execution and user interface level.
– The level with which we are most familiar.
– Composed of application programs such as

Word Processor,Paint etc.
– The implementation of the application is

hidden completely from the user

Actual Multilevel Computer

Operating System Machine

Positioning of the operating system machine level.

Introduction
• An operating system is the part of the program that manages the computer

hardware.
• It provides basis for application programs and acts as an intermediary

between user of a computer and computer hardware.

• OS varies in accomplishing tasks………
• For example:

 Mainframe OS are designed primarily to optimize utilization of hardware.
 P4ersonal computer operating system support complex and business

application and everything in between.
 Handheld computer OS are deigned to provide an environment in which a user

can easily interface with the computer to execute programs.

Thus some OS are designed to be convenient,
others to be efficient, and other some
combination of two.

What is an OS

• A computer can be divided into four
componenets:
Hardware
Operating system
Application programs
Users

SYSTEMS AND APPLICATION PROGRAMS

OPERATING SYSTEM

COMPUTER
HARDWARE

USER 1 USER 2 USER 3 USER n

Compiler Assembler Text Editor Database System

ABSTRACT VIEW OF THE COMPONENETS OF THE COMPUTER SYSTEM

• The hardware – the central processing unit, the
memory, input/output - provides the basic computing
resources.

• The application resources – such as word processors,
spreadsheet, compilers and web browsers – define the
ways in which these resources are used to solve
computing problems of the users.

• The OS controls and coordinates the use of hardware
among various application programs for the various
users

OS can be viewed from two
viewpoints :

• Users view
• Systems view

Users view
• User1: sits in front of PC, consisting of a

monitor, keyboard, mouse and system unit.
• User2: Some users sit at a terminal connected

to a mainframe or minicomputer. Other users are
accessing the same computer through other
terminals.

Users view contd……..
• User3: sit at workstation connected to networks of other

workstations and servers. These users have dedicated
resources for their use, but they also share resources
such as networking and servers – file, compute and print
servers.

• User4: handheld computers – individual users – wireless
.

Systems View
• Os is the most intimate with the hardware
• We can view it as a RESOURCE ALLOCATOR -----

• COMPUTER System has many resources – h/w and
s/w – they may be required to solve a problem : CPU
time, memory space, file-storage space, I/O devices and
so on….

• OS acts as an manger of these resources, the
OS must decide how to allocate them to specific
programs and users so that it can operate the computer
system efficiently.

Instruction Set Architecture (ISA)

The Instruction Set Architecture (ISA) is the part of the
processor that is visible to the programmer or compiler
writer. The ISA serves as the boundary between
software and hardware.

The ISA can be described using 5 categories:

•Operand Storage in the CPU

•Where are the operands kept other than in memory?

•Number of explicit named operands

•How many operands are named in a typical instruction.

•Operand location

•Can any ALU instruction operand be located in memory? Or
must all operands be kept internaly in the CPU?

•Operations

•What operations are provided in the ISA.

•Type and size of operands

•What is the type and size of each operand and how is it
specified?

The 3 most common types of ISAs are:

Stack - The operands are implicitly on top of
the stack.

Accumulator - One operand is implicitly the
accumulator.

General Purpose Register (GPR) - All
operands are explicitely mentioned, they are
either registers or memory locations.

Instruction Set Representation

• Purpose of instruction representation
– Conversion of high level language program and data

structures into machine level instructions
• Instruction set architecture

– Interface between high level language and machine
language

– Instruction set
– Addressing modes
– Instruction format

High Level Language
• Data types and structures:

– Scalars – Integers, Real numbers, Characters
– Arrays
– Records (structs)
– Arrays of records
– Pointers

• Program structures:
– Assignment statements
– Arithmetic expressions
– Control transfer statements

• If-then-else statement
• Switch statement
• Loop statements
• Function call statement
• Function return statement

– File I/O statements

Machine Language
• Instructions

– Logical instructions
• AND, OR, XOR, Shift

– Arithmetic instructions
• Data types

– Integers: Unsigned, Signed, Byte, Short, Long
– Real numbers: Single-precision (float), Double-precision (double)

• Operations
– Addition, Subtraction, Multiplication, Division

– Data transfer instructions
• Register transfer: Move
• Memory transfer: Load, Store
• I/O transfer: In, Out

– Control transfer instructions
• Unconditional branch
• Conditional branch
• Procedure call
• Return

Instruction Formats
• 3-operand instructions

– ADD op1, op2, op3; op1 op2 + op3
• 2-operand instructions

– ADD op1, op2; op1 op1 + op2
• 1-operand instructions

– INC op1; op1 op1 + 1
• Types of operands:

– Register operands
– Memory operands specified using addressing modes

Instruction Set Architectures
• Complex Instruction Set Computer (CISC) processors:

– 2-operand instructions and 1-operand instructions
– Any instruction can use memory operands
– Many addressing modes
– Complex instruction formats: Varying length instructions

• Reduced Instruction Set Computer (RISC) processors:
– 3-operand instructions, 2-operand instructions, and 1-operand instructions
– Load-Store Architecture (LSA) processors:

• Only memory transfer instructions (Load and Store) can use memory
operands.

• All other instructions can use register operands only.
– Simple instruction formats: Fixed length instructions

Translation of High-Level
Language Statements

Assignment statement: A = B + C

• CISC Architecture with 3-operand instructions:

ADD A, B, C

• CISC Architecture with 2-operand instructions:

LOAD R0, B
ADD R0, C
STORE A, R0

• RISC Architecture (Load-Store Architecture):

LOAD R0, B
LOAD R1, C
ADD R2, R0, R1
STORE A, R0

Opcode of
ADD

Address of
A

Address of
B

Address of
C

Opcode of
ADD

Register
R0

Opcode of
ADD

Register
R1

Register
R0

Register
R2

Address of
C

Instruction Format
• Instruction word should have the complete information required to fetch and

execute the instruction

• Fields of an instruction word
– Opcode of the operation to be carried out

• Varying length (CISC)
• Fixed length (RISC)

– Size of the operands:
• Byte, Word, Longword, Quadword for integer operands
• Float, Double for real operands

– Addressing mode (AM) of each operand
– Specification of each operand involves specifying one or more of the

following:
• General purpose register
• Value of an immediate operand
• Address of operand
• Base register
• Index register
• Displacement

• 3-operand CISC instruction format:
ADD dst, src1, src2

Instruction Representation

Specification
of src2

Opcode AM of
dst

Specification
of src1

Size of
operands

AM of
src2

AM of
src1

Specification
of dst

Specification
of src2

Specification
of src2

Opcode AM of
dst

Specification
of src1

Size of
operands

AM of
src2

AM of
src1

Specification
of dst

Specification
of src2

Specification
of src20011 000 00010 01 11010100011 00000

0011
0010 00001

Instruction Representation
• Examples of RISC instructions:

ADD.w R2, R0, R1

Opcode
Specification

of src
Size of
operands

AM of
src

Specification
of dst

01 10100010 00000 00001

Opcode

000111

Specification
of src1

Size of
operands

Specification
of dst

Specification
of src2

00001 01 00010 00000

Opcode

000111

LOAD.w R2, [R1][R0]

010011

Opcode

Registers

• The registers set stores intermediate data
used during the execution of the
instructions

• Processor register is a small amount of very fast computer memory used
to speed the execution of computer programs by providing quick access to
commonly used values—typically, the values being in the midst of a
calculation at a given point in time. (AC)

• Data registers are used to store integer numbers (DR)

• Address registers hold memory addresses and are used to access
memory. (AR)

• General Purpose registers (GPRs) can store both data and addresses,
i.e., they are combined Data/Address registers

• Floating Point registers (FPRs) are used to store floating pointComputer
arithmetic

• Constant registers hold read-only values (e.g., zero, one, pi, ...).

• Vector registers hold data for vector processing

• Special Purpose registers store internal CPU data, like the program
counter which indicates where the computer is in its instruction sequence

• Control Registers which ctrl the general behavior of the CPU

• Program counter: Holds address for instruction
(i.e. address of the next instruction after
execution of the current instruction is completed
(PC)

• Instruction Register: holds the instruction code.
(IR)

• Temporary register: holds temporary data (TR)
• Input register: holds input character (INPR)
• Output registers: holds output character (OUTR)

Instruction codes

• The internal organization of a digital system is defined by the
sequence of micro operations it performs on data stored in its
registers.

• Digital computer is capable of executing various micro
operations & can be instructed as to what sequence of
operations it must perform.

• The user of a computer can control the process by means of a
program.

• A program is a set of instructions that specify the operations,
operands, and the sequence by which processing has to
occur.

• The data processing task maybe altered by specifying a new
program with different instructions or specifying the same
instructions with different data.

• A computer instruction is a binary code that specifies a sequence
of micro operations for the computer. Instructions codes together
with data are stored in memory.

• The computer reads each instruction from memory and places it
in a control register. The control then interprets the binary code of
the instruction and proceeds to execute it by issuing a sequence of
micro operations .

• Every computer has its own instruction set. The ability to store
and execute , the stored program concept, is the most important
property of a general purpose computer.

• An instruction code is a group of bits that instruct
the computer to perform a specific operation. It usually
divided into two parts, each having its own particular interpretation.

• The most basic part of an instruction code is its operation
part. The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift and
complement.

• As an illustration, consider a computer with 64 distinct
operations. One of them being an ADD operation. When this
operation code is decoded in the control unit, the computer
issues control signals to read an operand from memory
and add the operand to a processor register.

• The relationship between a computer operation and a micro
operation. An operation is a part of an instruction stored in
computer memory. It is a binary code that tells the computer
to perform a specific operation.

• The control unit receives the instruction from memory and
interprets the computer code bits.

• It then issues a sequence of control signals to initiate
micro operations in internal computer registers.

• For every operation code, the control
issues a sequence of micro operations
needed for the hardware implementation
of the specified operation.

• For this reason, an operation code is sometimes called a macro
operations because it specifies a set of micro operations.

• The operation part of an instruction code specifies the operation
to be performed. This operation must be performed on some
data stored in processor

• Instruction Code specifies operation and
registers where the operands are to be found.

• Instruction Code format with two parts

ADDRESSOPCODE

• Opcode specifies the operation to be performed

• Address tells the control where to find an
operand in memory.

ADDRESSOPCODE INSTRUCTIONS
(PROGRAM)

OPERANDS
(DATA)

PROCESSOR
REGISTERS

Instruction Format

Memory

STORED PROGRAM ORGANIZATION

COMMON BUS SYSTEM
• BASIC COMPUTER HAS

 EIGHT REGISTERS
MEMORY UNIT
CONTROL UNIT

• Path must be provided to transfer information from one
register to another and between memory and registers.

• The number of wires will be excessive if connections are
made between the o/p of each register and i/p of other
registers.

• A more efficient scheme of transferring the information in
a system with many registers is to use a common bus

COMMON BUS

BUS
MEMORY

PC

DR

AC

INPR

IR

TR

OUTR

AR

ADDER
&

LOGIC

ADDRESS

Computer Instructions
• Computer instruction code format has 16 bits

• OPCODE : part of the instruction contains three
bits and the meaning of the 13 bits depends
upon the operation code encountered.

I OPCODE

15 14 12 11 0

ADDRESS

I is 0 for direct address and 1 for
indirect address

Computer instruction are of three types

• Memory reference instruction
• Register reference instruction
• Input-output instruction

Memory reference instruction

I OPCODE

15 14 12 11 0

ADDRESS

I is 0 for direct address and 1 for
indirect address

Register reference instruction

• They are recognized by the OPCOde 111 and 0
with the left most bit

• The other 12 bits specifies the operation.

• Register reference instruction specifies
operation on register.

• So, does not need any reference to memory

Input-output instruction

• They are recognized by the OPCOde 111
and 1 with the left most bit

• The other 12 bits specifies the operation.

• Input-output instruction does not need any
reference to memory

Central Processing Unit
• The part of the computer that

performs the bulk of data
processing operations is called the
central processing unit and is
referred to as CPU.

• The registers set stores
intermediate data used during the
execution of the instructions

• The ALU performs the required
micro operations for executing the
instructions.

• The Control unit supervises the
transfer of information among the
registers and instructs the ALU as
to which operation to perform.

Control

ALU

Register
set

Major Components of CPU

GENERAL REGISTER ORGANIZATION

• Memory locations are needed for storing
pointers, Return addresses etc.

• Referring to memory locations for such
applications is time consuming because
memory access is most time consuming
operation in computer.

• So, it is more convenient and efficient to
store these intermediate values in processor
registers

• When large number of registers are included
in the CPU it is efficient to connect them
through common bus system.

• Because registers communicate with each
other not only for direct data transfers, but
also while performing various
microoperations

• What is BUS
• Dig tal computers has many registers and

path must be provided to transfer
information from one register to another.

• No. of wires will be excessive if separate
lines are used between each register. Most
efficient way is to have Common bus
system.

• Bus structure consists of a set of common
lines, one for each bit of registers, thru
which binary information is transferred one
at a time.

• Ctrl signals determine which register is
selected by the bus during each particular
register transfer

MUXSELA { MUX } SELB

ALUOPR

R1
R2
R3
R4
R5
R6
R7

Input

3 x 8
decoder

SELD

Load
(7 lines)

Output

A bus B bus

Clock

Page 243
Morris mano

• General Register Organization:—
• When a large number of registers are included

in the CPU, it is most efficient to connect them
through a common bus system. The registers
communicate with each other not only for direct
data transfers, but also while performing various
micro-operations. Hence it is necessary to
provide a common unit that can perform all the
arithmetic, logic and shift micro-operation in the
processor.

• A Bus organization for seven CPU registers:—
• Reference Diagram: Page Number 243 by M Morris Mano

• The output of each register is connected to true multiplexer (mux) to form the two
buses A & B. The selection lines in each multiplexer select one register or the input
data for the particular bus. The A and B buses forms the input to a common ALU. The
operation selected in the ALU determines the arithmetic or logic micro-operation that
is to be performed. The result of the micro-operation is available for output and also
goes into the inputs of the registers. The register that receives the information from
the output bus is selected by a decoder. The decoder activates one of the register
load inputs, thus providing a transfer both between the data in the output bus and the
inputs of the selected destination register.

• The control unit that operates the CPU bus system directs the information flow
through the registers and ALU by selecting the various components in the systems.

• R1 R2 + R3
• (1) MUX A selection (SEC A): to place the content of R2 into bus A
• (2) MUX B selection (sec B): to place the content of R3 into bus B
• (3) ALU operation selection (OPR): to provide the arithmetic addition (A + B)
• (4) Decoder destination selection (SEC D): to transfer the content of the output

bus into R1
• These form the control selection variables are generated in the control unit and must

be available at the beginning of a clock cycle.

ALU

• Arithmetic:
• Addition, Subtraction, Multiplication,

Division
• Logic:
• Comparisons

Control Unit

• Reads & Interprets Program Instructions
• Directs the Operation of the Processor
• Controls the flow of programs and data

into and out of memory

• CU consists of two decoders, a counter and a number of
ctrl logic gates.

• An instruction read from memory is placed in instruction
register (IR) where it is divided into three parts:

• I bit
• Opcode
• 0-11 bits ----

• Operation code in bits 12 thru 14 are decoded with a 3*8
decoder

Central Processing Unit
• Machine Cycle
• Fetch
• Decode
• Execute
• Store

• Fetch
• Calls an instruction into

memory

• Decode
• Figures out what the

instruction is trying to do

• Execute
• Does the decoded instruction
• Add 2+2

• Store
• Puts the answer 4 into memory

for use by another instruction

Memory
• Memory unit is needed for

storing programs and data.

• Memory units that
communicate directly with
CPU is called MAIN MEMORY

• Devices that provide backup
storage is called auxiliary
memory

• Most common auxiliary
memory is magnetic disks and
magnetic tapes. They are used
for storing programs, large
data files, and other backup
information.

• Only programs and data that
are currently needed by the
processor will reside in main
memory

• All other information is stored
in auxiliary memory and
transferred to main memory
when needed

• Auxiliary
memory

• Slow
• High Capacity

• Main memory

• Small but
relatively faster
than auxiliary
memory

Cache
memory

Smaller and faster

Memory hierarchy in computer system

Magnetic
disk I/O Processor

CPU Cache
Memory

Main
Memory

Slow magnetic
tapes
used to store
removable files

Used as backup
storage

AUXILIARY MEMORY
Main memory
occupies the
central position by
being able to
communicate
directly with the
CPU and with
auxiliary memory
through /]/o
processor

When programs are not
residing in the main memory
and needed by the cpu they
are brought in from auxiliary
memory.

Programs not currently needed
in main memory are
transferred to auxiliary memory
to provide space for currently
used programs and data.

CACHE MEMORY
• a special very high speed memory called is sometimes used to increase the speed of

the processing by making current programs and data available to the CPU at the
rapid rate.

• The cache memory is employed in computer systems to compensate the speed
differential between main memory access time and logic.

• CPU logic is usually faster than main memory access time, with the result that
processing speed is limited primarily by the speed of the main memory.

• A Technique used to compensate for the mismatch in operating speeds is to employ
an extremely fast, small cache between the CPU and main memory whose access
time is close to processor logic clock cycle time.

• The cache is used for storing segments of programs currently being executed in the
CPU and temporary data frequently needed in the present calculations

• By doing this the performance rate of the computer also increases

Main Memory / Primary Memory units

• RAM (Random Access Memory)
• ROM (Read-only Memory)

• – They work in different ways and perform distinct functions
• – CPU Registers
• – Cache Memory

• • Also termed as ‘auxiliary’ or ‘backup’ storage, it is typically used as a
• supplement to main storage. It is much cheaper than the main storage and
• stores large amount of data and instructions permanently. Hardware

devices
• like magnetic tapes and disks fall under this category.

Secondary Memory/Auxiliary Memory

• Also termed as ‘auxiliary’ or ‘backup’
storage, it is typically used as a
supplement to main storage.

• It is much cheaper than the main storage
and stores large amount of data and
instructions permanently.

• Hardware devices like magnetic tapes and
disks fall under this category

Random Access Memory
• RAM or Random Access Memory is the

central storage unit in a computer system.

• It is the place in a computer where the
operating system, application programs and
the data in current use are kept temporarily
so that they can be accessed by the
computer’s processor.

• The more RAM a computer has, the more
data a computer can manipulate.

• Random access memory, also called the
Read/Write memory, is the temporary
memory of a computer.

• It is said to be ‘volatile’ since its contents are
accessible only as long as the computer is
on.

• The contents of RAM are cleared once the
computer is turned off.

• Types of RAM
1. STATIC RAM
2. DYNAMIC RAM

• STATIC RAM: CONSISTS OF INTERNAL
FLIP FLOPS THAT STORES THE BINARY
INFORMATION . The stored information
remains valid as long as the power is
applied to the unit.

• DYNAMIC RAM: stores the binary
information in the form of electric charges
that are applied to the capacitors.
(capacitors are attached to transistors) The
capacitors are provided by the inside the
chip by the MOS (metal oxide transistor)
transistors. The stored charge on the
capacitors tend to discharge with time and
the capacitors must be periodically
recharged by refreshing the dynamic
memory.

• Static memory is easy to use.

ROM
• ROM or Read Only Memory is

a special type of memory which
can only be read and contents
of which are not lost even when
the computer is switched off.

• It typically contains
manufacturer’s instructions.

• Among other things, ROM also
stores an initial program called
the ‘bootstrap loader’ whose
function is to start the computer
software operating, once the
power is turned on.

• Contents of ROM remains
unchanged after the power is
turned off and on again.

• Read-only memories can be
manufacturer-programmed or user-
programmed.

• PROM
• While manufacturer-programmed

ROMs have data burnt into the
circuitry, user programmed ROMs
can have the user load and then
store read-only programs.

• EPROM
• Information once stored on the

ROM or PROM chip cannot be
altered. However, another type of
memory called EPROM (Erasable
PROM) allows a user to erase the
information stored on the chip and
reprogram it with new information.

ROM Types

• PROM
• EPROM
• EEPROM

• Each type has unique characteristics, but they are all
types of memory with two things in common:

• Data stored in these chips is nonvolatile -- it is not
lost when power is removed.

• Data stored in these chips is either unchangeable or
requires a special operation to change (unlike RAM,
which can be changed as easily as it is read).

• ROM chips are fundamentally different
from RAM chips. While RAM uses
transistors to turn on or off access to a
capacitor at each intersection, ROM uses
a diode

AUXILIARY MEMORY

• RAM is volatile memory
having a limited storage
capacity.
Secondary/auxiliary
storage is storage other
than the RAM.

• These include devices
that are peripheral and
are connected and
controlled by the
computer to enable
permanent storage of
programs and data.

• The memory is
specifically meaning the
RAM. This keeps the
information for a shorter
period of time (usually
volatile), is faster and
more expensive.

• By Storage we mean the
Hard disk. Here the
information is retained
longer (nonvolatile), It’s
Slower and Cheaper

Auxiliary Storage Devices-Magnetic Tape, Floppy Disk,
Hard Disk.

• The Magnetic Storage Exploits duality of magnetism and
electricity. It converts electrical signals into magnetic
charges, captures magnetic charge on a storagemedium
and then later regenerates electrical current from stored
magnetic charge.Polarity of magnetic charge represents
bit values zero and one.

• Magnetic Disk
• The Magnetic Disk is Flat, circular platter with metallic

coating that is rotated beneath read/write heads. It is a
Random access device; read/write head can be moved
to any location on the platter.

Floppy Disk

• These are small removable
disks that are plastic coated
with magnetic recording
material. Floppy disks are
typically 3.5″ in size (diameter)
and can hold 1.44 MB of data.
This portable storage device is
a rewritable media and can be
reused a number of times.

• Floppy disks are commonly
used to move files between
different computers. The main
disadvantage of floppy disks is
that they can be damaged
easily and, therefore, are not
very reliable.

HARD DISK

• Another form of auxiliary storage
is a hard disk. A hard disk consists
of one or more rigid metal plates
coated with a metal oxide material
that allows data to be magnetically
recorded on the surface of the
platters.

• The hard disk platters spin at a
high rate of speed, typically 5400
to 7200 revolutions per minute
(RPM).

• Storage capacities of hard disks
for personal computers range from
10 GB to 120 GB (one billion
bytes are called a gigabyte).

Optical Drives

• CD's (Compact Disk)
• Their storage:
• ~ 700 MB storage
• Their Types:
• – CD-ROM (read only)
• – CD-R: (record) to a CD
• – CD-RW: can write and erase CD to reuse it

(re-writable)
• – DVD(Digital Video Disk)

What is a performance metric?

• Count
– Of how many times an event occurs

• Duration
– Of a time interval

• Size
– Of some parameter

• A value derived from these fundamental
measurements

Performance Measures
CPU Speed is measured as the Number of basic operations it can perform per unit
time.

Ex. Typical basic operation of fixed point addition of the content of two registers
R1 and R2 is:

R1:=R1+R2

Such operations are timed by a regular stream of signals(ticks or beats) issued by
System clock.

Speed of Clock = Frequency (ƒ) measured in Millions of ticks per second (MHz).

Clock Cycle or clock period (Tclock) = time required to execute the operation =I/f
microseconds.

Ex. If Clock speed is 250 MHz can perform one basic operation in the clock
period (Tclock) = 1/250=.004 µs.

NOTE: Operations such as division or floating point numbers requires more than one clock cycle
to complete the execution.

CPU’s processing of an instruction involves several steps
each of which requires at least one clock cycle:

1. Fetch the instruction from main memory M.

2. Decode the instruction's opcode.

3. Load from M any operands needed unless they are
already in CPU registers.

4. Execute the instruction via register to register operation.

5. Store the result in M.

T=N/IPS

T= total program execution time

N= Actual no. of instruction executed.

IPS= Average number of instruction executed per second

CPI= (ƒ * 106)/IPS

CPI= Average no of cycles per instruction.

ƒ = CPU’s clock frequency(MHz).

Hence T=N*CPI/ (ƒ * 106)

MIPS(Millions of instruction executed per second)=IPS* 106 or

= ƒ/CPI.

Equation T=N*CPI/ (ƒ * 106) shows that the three separate factors

Software, Architecture, and Hardware jointly determines the

performance of CPU .

Software: Efficiency with which the programs are written and compiled

Into object code influences N, the no. of instruction executed. Reducing

N reduces the overall execution time T.

Architecture: The Efficiency with which individual instructions are

Processed directly affects CPI. Reducing CPI reduces T.

Hardware: Speed of processor determines ƒ , the clock frequency.

Increasing ƒ reduces T.

Note:CISC processor’s aim is to reduce N at the expence of CPI whereas

RISC processors aim to reduce CPI at expence of N.

MFLOPS

• Better definition of “distance traveled”
• 1 unit of computation (~distance) ≡ 1

floating-point operation
• Millions of floating-point ops per second
• MFLOPS = f / (Te * 1000000)

– f = number of floating-point instructions
– Te = execution time

