Karnaugf maps

- The basic Boole an operations are $\mathcal{A N} \mathcal{D}, O \mathcal{R}$ and $\mathfrak{N} O \mathcal{T}$.
- These operations can be combined to form complexexpressions, which can also be directly translated into a fiardware circuit.
- Boole an alge brafelps us simplify expressions and circuits.
- we 'lllookat a grapfical tecfnique for simplifying an expression into a minimal sum of products ($\mathcal{M S} \mathcal{P}$) form:
- There are a minimal number of product terms in the expression.
- Each term fas a minimalnumber of literals.
- Circuit-wise, this leads to a minimal two-levelimplementation.

Standard forms of expressions

- A sum of products (SOP) expression contains:
- Only $O \mathbb{R}(s u m)$ operations at the "outermost" level
- Each term that is summed must be a product of literals

$$
f(x, y, z)=y^{\prime}+x y z^{\prime}+x z
$$

- The advantage is that any sum of products expressioncan be implemented using a two-levelcircuit
- Citerals and their complements at the " 0 th" level
- $\mathcal{A N} \mathcal{D}$ gates at the first level
- a single ORgate at the second level

Terminology: Minterms

- \mathcal{A} minterm is a special product of literals, in whicheach input variable appears exactly once.
- Afunction with n variables has 2^{n} minterms (since each variable can appear complemented or not)
- A three-variable function, such as $f(x, y, z)$, has $2^{3}=8$ minterms:

$$
\begin{array}{llll}
x y z^{\prime} & x y z & x y z & x y z \\
x y^{\prime} z^{\prime} & x y z & x y z & x y z
\end{array}
$$

- Each minterm is true for exactly one combination of inputs:

Minterm Is true when... Shorthand
xy' $\quad x=0, y=0, z=0 \quad m_{0}$
xy' $\quad x=0, y=0, z=1 \quad m_{1}$
xyz $\quad x=0, y=1, z=0 \quad m_{2}$
$x y z \quad x=0, y=1, z=1 \quad m_{3}$
$x y^{\prime} z^{\prime} \quad x=1, y=0, z=0 \quad m_{4}$
$x y z \quad x=1, y=0, z=1 \quad m_{5}$
$x y z \quad x=1, y=1, z=0 \quad m_{6}$
$x y z \quad x=1, y=1, z=1 \quad m_{7}$

Terminology: Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- If you have a truth table for a function, you can write a sum of minterms expressionjust by picking out the rows of the table where the function output is 1 .

x	y	z	$f(x, y, z)$	$f^{\prime}(x, y, z)$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

$$
\begin{aligned}
f & =x y^{\prime} z^{\prime}+x y^{\prime} z+x y z^{\prime}+x y z+x y z^{\prime} \\
& =m_{0}+m_{1}+m_{2}+m_{3}+m_{6} \\
& =\sum m(0,1,2,3,6) \\
f^{\prime} & =x y^{\prime} z^{\prime}+x y^{\prime} z+x y z \\
& =m_{4}+m_{5}+m_{7} \\
& =\sum m(4,5,7)
\end{aligned}
$$

Re-arranging the truth table

- A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugr map.

x	y	minterm
0	0	$x y^{\prime}$
0	1	xy
1	0	xy
1	1	$x y$

- Now we caneasily see which minterms contain common literals.
- Minterms on the left and right sides contain y'and y respectively.
- Minterms in the top and Gottom rows contain x'and x respectively.

Karnaugh map simplifications

- Imagine a two-variable sum of minterms:

$$
x y^{\prime}+x y
$$

- Both of these minterms appear in the top row of a Karnaugh map, which means that they both contain the literal x :

- What happens if you simplify this expression using Boole an alge 6 ra?

$$
\begin{aligned}
x^{\prime} y^{\prime}+x y & =x^{\prime}\left(y^{\prime}+y\right) & & {[\text { Distributive }] } \\
& =x^{\prime} \cdot 1 & & {\left[y+y^{\prime}=1\right] } \\
& =x^{\prime} & & {[x \cdot 1=x] }
\end{aligned}
$$

More two-variable examples

- Another example expression is xy + xy.
- Both minterms appear in the right side, where y is uncomplemented.
- Tfus, we can reduce xy + xy to justy.

- How about xy'+xy + xy?
- We have xy'+xy in the top row, corresponding to x:
- There's also xy + xy in the right side, corresponding to y.
- This whole expression can be reduced to $x^{\prime}+y$.

A three-variable Karnaugh map

- For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

- Another way to labelthe K-map (use whichever youlike):

		y		
		$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$
$x y y z '$				
		$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$
			$x y z^{\prime}$	

- With this ordering, any group of 2,4 or 8 adjacent $s q u a r e s$ on the map contains common literals that can be factored out.

$$
\begin{aligned}
& x y z+x y z \\
= & x^{\prime} z\left(y^{\prime}+y\right) \\
= & x^{\prime} z \cdot 1 \\
= & x^{\prime} z
\end{aligned}
$$

- "Adjacency" includes wrapping around the left and right sides:

$$
\begin{aligned}
& x y^{\prime} z^{\prime}+x y^{\prime} z^{\prime}+x y z^{\prime}+x y z^{\prime} \\
= & z^{\prime}\left(x y^{\prime}+x y^{\prime}+x y+x y\right) \\
= & z^{\prime}\left(y^{\prime}\left(x^{\prime}+x\right)+y\left(x^{\prime}+x\right)\right) \\
= & z^{\prime}\left(y^{\prime}+y\right) \\
= & z^{\prime}
\end{aligned}
$$

- We ll use this property of adjacent squares to do our simplifications.

Example K map simplification

- Let's consider simplifying $f(x, y, z)=x y+y z+x z$.
- First, you should convert the expression into a sum of minterms form, if it's not already.
- The easiest way to do this is to make a truth table for the function, and then read off the minterms.
- Youcaneither write out the literals or use the minterm shorthand.
- Here is the truth table and sum of minterms for our example:

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
f(x, y, z) & =x y z+x y^{\prime} z+x y z^{\prime}+x y z \\
& =m_{1}+m_{5}+m_{6}+m_{7}
\end{aligned}
$$

Making the example K-map

- Next up is drawing and filling in the K-map.
- Put $1 s$ in the map for each minterm, and $0 s$ in the other squares.
- You can use either the minterm products or the shorthand to show you where the $1 s$ and 0 s belong.
- In our example, we can write $f(x, y, z)$ in two equivalent ways.

$f(x, y, z)=x y^{\prime} z+x y^{\prime} z+x y z z^{\prime}+x y z$				
			\mathcal{Y}	
	xy ${ }^{\prime}$	$x y z$	$x y z$	xyz'
x	xy 'z'	xy z	$x y z$	xyz'
		Z		

$$
f(x, y, z)=m_{1}+m_{5}+m_{6}+m_{7}
$$

- In either case, the resulting K-map is shown below.

		\mathcal{y}		
		0	1	0
x	0	1	1	1

K maps from truth tables

- You can also fill in the 代map directly from a truth table.- The output in row i of the table goes into square m_{i} of the 炎map.
- Remember that the rightmost columns of the K-map are "switched."

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0

Grouping the minterms together

- The most difficult step is grouping together all the $1 s$ in the K-map.
- Make rectangles around groups of one, two, four or eight $1 s$.
- All of the $1 s$ in the map should be included in at least one rectangle.
- Do not include any of the $0 s$.

- Each group corresponds to one product term. For the simplest result:
- Make as few rectangles as possible, to minimize the number of products in the final expression.
- Make eacfrectangle as large as possible, to minimize the number of literals in each term.
- It's all right for rectangles to overlap, if that makes them larger.

Reading the $\mathcal{M S} P$ from the \mathcal{K} map

- Eacfirectangle corresponds to one product term.
- The product is determined by finding the common literals in that rectangle.

- For our example, we find that $x y+y^{\prime} z+x z=y^{\prime} z+x y$.

Practice K map 1

- Simplify the sum of minterms $m_{1}+m_{3}+m_{5}+m_{6}$.

Solutions for practice \mathcal{K} map 1

- Here is the filled in K-map, with allgroups shown.
- The magenta and greengroups overlap, which makes each of them as large as possible.
- Minterm m_{6} is in a group all by its lonesome.

- The final MSP fiere is $x^{\prime} z+y^{\prime} z+x y z$.

Four-variable K maps

- We can do four-variable expressions too!
- The minterms in the third and fourth columns, and in the third and fourth rows, are switched around.
- Again, this ensures that adjacent squares fave common literals.

- Grouping minterms is similar to the three-variable case, but:
- You can have rectangular groups of 1, 2, 4, 8 or 16 minterms.
- You can wrap around all four sides.

$$
\text { Example: Simplify } m_{0}+m_{2}+m_{5}+m_{8}+m_{10}+m_{13}
$$

- The expression is already a sum of minterms, so here's the K-map:

		\mathcal{Y}		
\mathcal{W}	1	0	0	1
	0	1	0	0
x				
	1	0	0	1

- We can make the following groups, resulting in the $\mathcal{M S} \mathcal{P} x^{\prime} \mathbf{z}^{\prime}+$ xy ${ }^{\prime}$.

K maps can be tricky!

- There may not necessarily be a unique $\mathcal{M S}$ P. The K-map below yields two valid and equivalent $\mathcal{M S} P s$, Gecause there are two possible ways to include minterm m_{7}.

- Remember that overlapping groups is possible, as shown above.

More Examples of grouping

(a)

(6)

1

(d)

$$
\begin{array}{c|c|c|c|c|c}
& \mathrm{CD} & \mathrm{CD} & \mathrm{cD} & \mathrm{cD} \\
\mathrm{AB} & 1 & 0 & 0 & 0 \\
\hline \mathrm{AB} & 0 & 0 & 0 & 0 \\
\hline \mathrm{AB} & 0 & 0 & 0 & 0 \\
\hline \mathrm{AB} & 1 & 0 & 0 & 1
\end{array}
$$

(6)

(a)

(b)

