CYCLIC CODES

are of interest and importance because

They posses rich algebraic structure that can be utilized in a
variety of ways.

They have extremely concise specifications.
They can be efficiently implemented using simple
Many practically important codes are cyclic.

allow to encode streams od data (bits).
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IMPORTANT NOTE

In ocrlder to specify a binary code with 2« codewords of length n one may
nee

to write down
2k
codewords of length n.
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Definitio
(i) Cis aline
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mComparing with linear codes, the cyclic codes are quite scarce. For,
example there are 11 811 linear (7,3) linear binary codes, but only two
of them are cyclic.

O For any field F and any integer n >= 3 there are
always the following cyclic codes of length n over F:

- code consisting of just one all-zero codeword.
- code consisting of codewords (a, a, ...,a) fora € F.

- code consisting of all codewords with
parity O.

- code consisting of all codewords of length n

mFor some cases, for example for n = 19 and F = GF(2), the above four
trivial cyclic codes are the only cyclic codes.
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= [he code with the generator matrix

mhas codewords

1011100 c,=0108140 c,=0010111

=€, +C,=1110010 ¢, + c; = 1001011c, + c; = 0111001
=EC, + C, + ;= 1100101

mand It is cyclic because the right shifts have the following impacts
[=] Cl —> C2, C2 —> C3, C3 g Cl + C3

[=] C1+C2—)C2+C3, C1+C3—)C1+C2+C3, C2+C3—)C1
E|C1+C2+C3—)C1+C2
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denotes the set of all polynomials over GF(q).
= the largest m such that x™ has a non-zero coefficient in f(x).
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Calculate (x + 1)? in F,[x] /7 (x*+ x + 1). It holds
E(X+1)2=X+2x+ 1=x?+1=x (mod x? + x + 1).
Fq[X] 7 f(x)?
| FolX] /7 f(x) | = g dea (i),

in F,[X] /7 (x?+x+1)
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(=]

ESince X" = 1 (mod x"-1) we can compute f(x) mod x"-1 as follow:
=ln f(x) replace x" by 1, x"*1 by x, x" *2 by x?, X" *3 by x3, ...

[=]

B, <> a,ta, XtayReh.. +a,  x"]

EXEax +...a. , x")=a ,+a,x+a, x>+..+a,,x"!
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Let C be a cyclic code. Cislinear =  holds.

Leta(x) e C,r(X) =ry+rx+ ... +r, x"1
@ r(x)ax) = r,a(x) + rexa(x) + ...+ r, x"1a(x)

IS 1IN C by (i) because summands are cyclic shifts of a(x).
Let (1) and (ii) hold

® Taking r(x) to be a scalar the conditions imply linearity of C.

® Taking r(x) = x the conditions imply cyclicity of C.
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O If f(x) € R,,, then
[=]

m(multiplication 1s modulo x"-1).

(=]

O We check conditions (i) and (ii) of the previous theorem.
=(1) If a(X)f(x) € (f(x)) and b(X)f(x) € (f(x)), then

ma(x)f(x) + b(x)f(x) = (a(x) + b(x)) f(x) e (f(x))
@(ii) If a(x)f(x) € (f(x)), r(x) € R, then
mr(x) (a(x)f(x)) = (r(x)a(x)) f(x) e (f(x)).
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/ hat all cyclic codes C have the form C = (f(x)) for some f(x) € R,
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& Clearly,
EX"=1 =q(X)g(x) + r(x) with deg r(x) <deg g(x)

mand therefore r(x) = -g(x)g(x) (mod x" -1) and
mr(x) € C = r(X) = 0 = g(x) Is a factor of x"-1.
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= I'he last claim of the previous theorem gives a recipe

mlndeed,

[=] k
O Find all binary cyclic codes of length 3.
o) . Since

Ex3—-1= (X+1)(x2+x+1)

= both factors are irreducible in GF(2)

mwe have the following generator polynomials and codes.

R, V(3,2)

{0,1+x, x+x?3 1+ x?}{000, 110, 011, 101}
{0,1+ x+ x?%} {000, 111}

{0} {000}
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11 elcnSuppose C is a cyclic code of codewords of length n with the generator polynomial

B g(X)=go+gX+.. +gx".

m  Thendim (C)=n - r and a generator matrix G, for C is
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= he taskis to determine all ternary codes of length 4 and generators for them.

mFactorization of x*- 1 over GF(3) has the form
EXt-1=(X-D0C+x2+x+1)=(Xx-1)(x+1)(x*+1)

= Therefore there are 2° = 8 divisors of x* - 1 and each generates a cyclic code.

X+1
i
(x-D(x+1)=x>-1
(X-D)(x>+1)=x3-x2+x-1 [-11-11]

(x + 1)(x2 + 1) [1111]
x4-1=0 [0000]
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mLet C be a cyclic [n,k]-code with the generator polynomial g(x) (of degree n -
K). By the last theorem g(x) is a factor of x"- 1. Hence

mx"- 1 =g(X)h(x)
=mfor some h(x) of degree k (where h(x) is called the of C).

Let C be a cyclic code in R,, with a generator polynomial g(x) and a
check polynomial h(x). Then an c(x) e R, is a codeword of C if c(x)h(x) =0 -
this and next congruences are modulo XM= 1.
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mSince dim ((h(x))) = n - k = dim (C") we might easily be fooled to think
that the check polynomial h(x) of the code C generates the dual code
C/\

=mReality Is “slightly different":

O Suppose C is a cyclic [n,k]-code with the check polynomial
mh(x) = hy + hyx + ... + h xK,

=mthen
@ a parity-check matrix for C is

m C"isthe cyclic code generated by the polynomial

=i.e. the reciprocal polynomial of h(x).




o A polynomial c(x) = c,+ ¢c;X + X" Lrepresents a code
from Cif c(x)h(x) = 0. For c(x)h(x) to be 0 tPue coefficients at xk,..., x"-1
must be zero, i.e.

mTherefore any codeword ¢, ¢,... €,  C is orthogonal to the word h, h,
..n,00...0 and to its cyclic shifts.

mRows of the matrix H are therefore in C*. Moreover, since h, = 1, these
row-vectors are linearly mdependent Their number is n - k = d|m (Ch).
Hence H is a generator matrix for C", i.e. a parity-check matrix for C.

=ln order to show that C” is a cyclic code generated by the polynomial

=it 1s sufficient to show tnat Is a factor of x"-1.

mObserve that and since h(x Dg(x 1) =(x1Hn-1
mwe have that xKh(x )x"kg(x 1) =x"(x "-1)=1-x"

mand therefors: IS iIndeed a factor of x" -1.
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mLet C be an (n,k)-code over an field F with the generator polynomial
Eg(X)=0g,+ O, X+..+0, ,x"tofdegreer=n-k.

=If @ message vector m is represented by a polynomial m(x) of degree k and m
IS encoded by

EM = ¢ = MG;,
mthen the following relation between m(x) and c¢(x) holds

=c(X) = m(X)g(x).
mSuch an encoding can be realized by the shift register shown in Figure below,
where input is the k-bit message to be encoded followed by n - k 0" and the
output will be the encoded message.
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mANnother method for encoding of cyclic codes is based on the
following (so called systematic) representation of the generator and
parity-check matrices for cyclic codes.

O Let C be an (n,k)-code with generator polynomial g(x) and r
=n-kK For 1=01,...K-1 let G,; be the length n vector whose _
polynomial is G, (x) = x ™-x ™! mod g(x). Then the k * n matrix G, with
row vectors G, | is a generator matrix for C.

mMoreover, If H,, is the length n vector corresponding to polynomial

H, ;(X) = Xl mod ﬂx) then the r * n matrix H, with row vectors H, ,is a
parity check matrix for C. If the message vector m is encoded by"

M = ¢ = MG,
mthen the relation between corresponding polynomials is
=mC(X) = X'm(X) - [X'm(X)] mod g(x).
m0n this basis one can construct the following shift-register encoder

forOI the case of a systematic representation of the generator for a cyclic
code:

mShift-register encoder for s%/_stematic representation of cyclic codes.
|

Switch A'is closed for first k ticks and closed for last r ticks; switch B iIs
down for first k ticks and up for last r ticks.
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Definition (=XEV(gl)

NN
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o Polynomial x°+ x + 1 is irreducible over GF(2) and x is
primitive element of the field F,[x] /7 (x3+ x + 1).

mF,[X] /7 (x3+x+1)=
{0, X, X5, X3=X+ 1, X=X+ X, X=X+ x+1,x0=x2+1}

=T he parity-check matrix for a cyclic version of Ham (3,2)
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= Ihe binary Hamming code Ham (r,2) is equivalent to a cyclic code.

mlt is known from allgebra that if péx) is an irreducible polynomial of degree r, then the
ring F,[x] 7 p(x) is a field of order 2".

=in addition, every finite field has a primitive element. Therefore, there exists an element
a of F,[x] / p(x) such that

mF,[X] /Z p(x) ={0, 1, a, a?,..., a* 2}
mLet us identify an elementa,+ a, + ... a, ;X" of F,[x] / p(x) with the column vector
B(ay, ay,.--,8,.)"
mand consider the binary r * (2" -1) matrix
mH=[1"aa? ... a>"r2].

mLet now C be the binary linear code having H as a parity check matrix.
mSince the columns of H are all distinct non-zero vectors of V(r,2), C = Ham (r,2).
mPutting n = 2" -1 we get
O C={f,f,...T,,evV(n,2) | f,+fia+...+f ;a1 =0 (2)
g = {f(x) e R, | f(a) = 0in F,[x] 7 p(x)} ©)
zIf f(x) € Cand r(x) € R, then r(x)f(x) € C because
mr(@)f(a) =r(a) e0=0
mand therefore, by one of the previous theorems, this version of Ham (r,2) is Cyclic.
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most important cyclic codes for applications belon
BCH codes = o y :

1A polynomial p is said to be minimal for a complex
nhumber x in Z, 1f p(x) = 0 and p is irreducible over Z,,.
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