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Discrete Memoryless Channel

 Definition of DMC
Channel with input X & output Y which is   
noisy version of X. 
Discrete when both of alphabets X & Y finite sizes.
Memoryless when no dependency between
input symbols. 
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 Channel Matrix (Transition Probability Matrix)

The size is J by K
for all j

a priori prob. is : 
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 Given a priori prob.     , and the channel matrix, P
then we can find the prob. of the various output  
symbols,       as

the joint prob. dist’n of X and Y

the marginal prob. dist’n of the output Y,
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Discrete Memoryless Channel(cont’)

 BSC (Binary Symmetric Channel)
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Mutual Information
 Conditional Entropy

 The mean value

-> H(X|Y) : a conditional entropy (equivocation)
The amount of uncertainty remaining about the   
channel input data after the channel output has been   
observed.

 Mutual Information : The uncertainty of the input resolved by 
observing output

I(X;Y) ≡ H(X) - H(X|Y) ,and
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Properties of Mutual Information
( simple ex. needed for 2 by 2 DMC)

 Symmetric  :  
 Non-negative :




where
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Channel Capacity

 For a dms with input X, output Y, &                       ,

where 

 I(X;Y) just depends upon                                       , & channel.
Since              is indep. of the channel, it is possible to
maximize I(X;Y) w.r.t.              .

 Def. of Channel Capacity.

(bits per channel use)     
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Ex.) for BSC
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Channel Coding Theorem
 For reliable communication , needs channel encoding & decoding.

“any coding scheme which gives the error as small as possible, and 
which is efficient enough that code rate is not too small?”

=> Shannon’s second theorem (noisy coding theorem)

Let dms with alphabet X have entropy H(X) and produce symbols 
once  every Ts, and dmc have capacity C and be used once every Tc . 
Then,

i)   if                            , there exists a coding scheme.

ⅱ)  if                           , it is not possible to transmit with arbitrary
small error.                            
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Ex.) for BSC with 
The condition for reliable comm. ,

Let        be r , then  

for          , there exists a code (with code rate less 
than or equal to C) capable of achieving an arbitrary 
low probability of error.                      

“ The code rate             where k is k-bit input, and n is   
n-bit coded bits,.”
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Differential Entropy
 Differential Entropy

where is p.d.f.

-extension into continuous r.v.

 Basis to derive the Channel Capacity Theorem
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Maximum Differential Entropy for Specified Variance

2 2
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  Find p.d.f. for which ( ) is maximum, subject to 
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Maximum Differential Entropy for Specified Variance

2
2 1 2

  Sol. is based on calculus of variation & use of Lagrange multiplier
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     should be stationary to get maximum entropy.
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Mutual Information for Continuous r.v
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Shannon’s Channel Capacity Theorem
                                For bandlimited, power limited Gaussian channels

                                                    log 1   (bits/s)2
The capacity of a channel of bandwidth 
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additive white gaussian noise of psd /2,  and limited in bandwidth to , 0

 is the average transmitted power, and  is the noise ( )

    - It is not possible to transmit at rate highe
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    - It does not say how to find coding and modulation to achieve maximum capacity,
      but it indicates that approaching this limit, the transmitted signal should 
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Bandwidth efficient diagram
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 Define ideal system as ,
       where  is the Tx energy per bit

   Then, log (1 )
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   For infinite bandwidth channel
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