Chapter-4

FREQUENCY DOMAIN
ANALYSIS , COMPENSATION &
CONTROL COMPONENT



Frequency Response Methods
and Stability

In previous chapters we examined the use of test signals such as a step and a ramp
signal. In this chapter we consider the steady-state response of a system to a sinusoidal
input test signal. We will see that the response of a linear constant coefficient system
to a sinusoidal input signal is an output sinusoidal signal at the same frequency as the
input. However, the magnitude and phase of the output signal differ from those of the
input sinusoidal signal, and the amount of difference is a function of the input
frequency. Thus we will be investigating the steady-state response of the system to a
sinusoidal input as the frequency varies.

We will examine the transfer function G(s) when s =jw and develop methods for
graphically displaying the complex number G(j)as w varies. The Bode plot is one of the
most powerful graphical tools for analyzing and designing control systems, and we will
cover that subject in this chapter. We will also consider polar plots and log magnitude
and phase diagrams. We will develop several time-domain performance measures in
terms of the frequency response of the system as well as introduce the concept of
system bandwidth.



Introduction

The frequency response of a system is defined as the steady—state response of
the system to a sinusoidal input signai. The sinusoid is a unique input signal,
and the resulting output signai for a linear system, as well as signals
throughout the system, is sinusoidal in the steady—state; it differs form the

input waveform oniy n ampiitude and phase.



Frequency Response Plots

Polar Plots




DIRECT POLAR PLOTS

We can plot transfer function in polar plamn
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DIRECT POLAR PLOTS

1. Proportional element

Transfer function: G(s) = C(s) _ K
R(s)
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DIRECT POLAR PLOTS

2. Integrating element
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Transfer function: G(s) = C(s) _ i
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DIRECT POLAR PLOTS

3. Inertial element
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DIRECT POLAR PLOTS

4. Oscillating element

Transfer function: G(s) = C(s) = L 0<{ <1
] R(S) 7252 +2¢Ts+1
G(jw)=
(1-0°T%)+j2Tw
. 1 4, 21w
G(jw) - p(0) =g (22 )

maximum value of G(jw)

Make: %(|G(ja))|)=0 = 0=0 =a)n\/1—2§2 (O<§<g)
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS

5. Differentiating element

Transfer function:

G(s) =+

differential

S differential

Ts+1 first — order differential
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DIRECT POLAR PLOTS

6. Delay element

Transfer function: G(s) = & = e_z-S
R(s)

G(jo)=e'" { Glie) =1
p(w)=2G(Jjw) =-wt
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DIRECT POLAR PLOTS

To obtain the direct polar plot of a system’s forward transfer function,
the following criteria are used to determine the key parts of the curve.

Step 1. The forward transfer function has the general form

K (1 +joT,)(1+joT,)---(1+joT,)
(Jo)"(1 +joTi )1 +joT3) (1 +joT,)

For this transfer function the system type is equal to the value of m and
determines the portion of the polar plot representing the lim,, .y G(jo). The
low-frequency polar plot characteristic (as ® — 0) of the different system
types are summarized in Fig.
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K, (1+joT)(1+joTy) (1 +joT,)

G(jo) =
(jo) (jo)"(1 +joT)(1 +joTs)--- (1 +joT,)
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The angle at ® = 0 is m(—90°).

The arrow on the polar plots-indicates the direction of increasing frequency.



Step 2. The high-frequency end of the polar plot can be determined as
follows:

lim G(jo)=0 /(w—m — u)90°

(= 00

- byfja+
Gje) = @ghjl! + ..

Step 3. The asymptote that the low-frequency end approaches, for a Type |
system, is determined by taking the limit as ® — 0 of the real part of the

transfer function.
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Step 4. The frequencies at the points of intersection of the polar plot with

the negative real axis and the imaginary axis are determined, respectively, by

setting
Im G(jo)] =0
Re G(jo)] =0
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Step S. If there are no frequency-dependent terms in the numerator of
the transfer function, the curve is a smooth one in which the angle of G( jo)
continuously decreases as ® goes from 0 to oo. With time constants in the
numerator, and depending upon their values, the angle may not continuously
vary in the same direction, thus creating “dents” in the polar plot.
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Step 6. it is important to know the exact shape of the polar plot of G(jo)
in the vicinity of the —1 40 point and the crossing point on the negative real axis.
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Frequency Response Plots

Polar Plots
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Polar plot for G( jw) = Kfjw( jot + 1). Note that w = = at the origin.
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Frequency Response Plots

Polar Plots
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Polar plot for G jw) = K/jw( joT + 1). Note that @ = == al the origin.




