William Stallings
Data and Computer
Communications
$7^{\text {th }}$ Edition

Chapter 12
Routing

Routing in Circuit Switched Network

- Many connections will need paths through more than one switch
- Need to find a route
-Efficiency
-Resilience
- Public telephone switches are a tree structure -Static routing uses the same approach all the time
- Dynamic routing allows for changes in routing depending on traffic
—Uses a peer structure for nodes

Alternate Routing

- Possible routes between end offices predefined
- Originating switch selects appropriate route
- Routes listed in preference order
- Different sets of routes may be used at different times

Alternate Routing
Diagram

Route a: $X ® Y$
Route b: $X ® J ® Y$
Route c: $X ® K ® Y$
\bigcirc = end office
Route d: $\mathrm{X®} \boldsymbol{1} ® \mathrm{~J} ® \mathrm{Y}$
\bigcirc = intermediate switching node
(a) Topology

Time Period	First route	Second route	Third route	Fourth and final route
Morning	a	b	c	d
Afternoon	a	d	b	c
Evening	a	d	c	b
Weekend	a	c	b	d

(b) Routing table

Routing in Packet Switched Network

- Complex, crucial aspect of packet switched networks
- Characteristics required
-Correctness
-Simplicity
—Robustness
-Stability
-Fairness
-Optimality
-Efficiency

Performance Criteria

- Used for selection of route
- Minimum hop
- Least cost
-See Stallings appendix 10A for routing algorithms

Example Packet Switched Network

Decision Time and Place

- Time
-Packet or virtual circuit basis
- Place
—Distributed
- Made by each node
-Centralized
-Source

Network Information Source and Update Timing

- Routing decisions usually based on knowledge of network (not always)
- Distributed routing
- Nodes use local knowledge
- May collect info from adjacent nodes
- May collect info from all nodes on a potential route
- Central routing
- Collect info from all nodes
- Update timing
- When is network info held by nodes updated
- Fixed - never updated
- Adaptive - regular updates

Routing Strategies

- Fixed
- Flooding
- Random
- Adaptive

Fixed Routing

- Single permanent route for each source to destination pair
- Determine routes using a least cost algorithm (appendix 10A)
- Route fixed, at least until a change in network topology

CENTRAL ROUTING DIRECTORY

Fixed Routing Tables

	1	2	3	4	5	6
1	-	1	5	2	4	5
2	2	-	5	2	4	5
3	4	3	-	5	3	5
4	4	4	5	-	4	5
5	4	4	5	5	-	5
6	4	4	5	5	6	-

Node 1 Directory

Destination	Next Node
2	2
3	4
4	4
5	4
6	4

Node 4 Directory

Destination	Next Node
1	2
2	2
3	5
5	5
6	5

Node 2 Directory

Destination	Next Node
1	1
3	3
4	4
5	4
6	4

Node 5 Directory
Destination Next Node

1	4
2	4
3	3
4	4
6	6

Node 3 Directory

Destination	Next Node
1	5
2	5
4	5
5	5
6	5

Node 6 Directory
Destination Next Node

1	5
2	5
3	5
4	5
5	5

Flooding

- No network info required
- Packet sent by node to every neighbor
- Incoming packets retransmitted on every link except incoming link
- Eventually a number of copies will arrive at destination
- Each packet is uniquely numbered so duplicates can be discarded
- Nodes can remember packets already forwarded to keep network load in bounds
- Can include a hop count in packets

Flooding Example

(a) First hop

(b) Second hop

(c) Third hop

Properties of Flooding

- All possible routes are tried
-Very robust
- At least one packet will have taken minimum hop count route
-Can be used to set up virtual circuit
- All nodes are visited
-Useful to distribute information (e.g. routing)

Random Routing

- Node selects one outgoing path for retransmission of incoming packet
- Selection can be random or round robin
- Can select outgoing path based on probability calculation
- No network info needed
- Route is typically not least cost nor minimum hop

Adaptive Routing

- Used by almost all packet switching networks
- Routing decisions change as conditions on the network change
- Failure
- Congestion
- Requires info about network
- Decisions more complex
- Tradeoff between quality of network info and overhead
- Reacting too quickly can cause oscillation
- Too slowly to be relevant

Adaptive Routing - Advantages

- Improved performance
- Aid congestion control (See chapter 13)
- Complex system
-May not realize theoretical benefits

Classification

- Based on information sources
-Local (isolated)
- Route to outgoing link with shortest queue
- Can include bias for each destination
- Rarely used - do not make use of easily available info
—Adjacent nodes
—All nodes

Isolated Adaptive Routing

Node 4's Bias
Table for
Destination 6

Next Node Bias

1	9
2	6
3	3
5	0

ARPANET Routing Strategies(1)

- First Generation
—1969
-Distributed adaptive
-Estimated delay as performance criterion
-Bellman-Ford algorithm (appendix 10a)
-Node exchanges delay vector with neighbors
-Update routing table based on incoming info
-Doesn't consider line speed, just queue length
-Queue length not a good measurement of delay
-Responds slowly to congestion

ARPANET Routing Strategies(2)

- Second Generation
-1979
-Uses delay as performance criterion
—Delay measured directly
—Uses Dijkstra's algorithm (appendix 10a)
-Good under light and medium loads
-Under heavy loads, little correlation between reported delays and those experienced

ARPANET Routing Strategies(3)

- Third Generation
-1987
—Link cost calculations changed
-Measure average delay over last 10 seconds
-Normalize based on current value and previous results

Least Cost Algorithms

- Basis for routing decisions
- Can minimize hop with each link cost 1
- Can have link value inversely proportional to capacity
- Given network of nodes connected by bi-directional links
- Each link has a cost in each direction
- Define cost of path between two nodes as sum of costs of links traversed
- For each pair of nodes, find a path with the least cost
- Link costs in different directions may be different
- E.g. length of packet queue

Dijkstra's Algorithm Definitions

- Find shortest paths from given source node to all other nodes, by developing paths in order of increasing path length
- $\mathrm{N}=$ set of nodes in the network
- $s=$ source node
- $\mathrm{T}=$ set of nodes so far incorporated by the algorithm
- $w(i, j)=$ link cost from node i to node j
$-w(i, i)=0$
$-w(\mathrm{i}, \mathrm{j})=\infty$ if the two nodes are not directly connected
$-\mathrm{w}(\mathrm{i}, \mathrm{j}) \geq 0$ if the two nodes are directly connected
- $\mathrm{L}(\mathrm{n})=$ cost of least-cost path from node s to node n currently known
- At termination, $L(n)$ is cost of least-cost path from s to n

Dijkstra's Algorithm Method

- Step 1 [Initialization]
$-T=\{s\}$ Set of nodes so far incorporated consists of only source node
$-L(n)=w(s, n)$ for $n \neq s$
- Initial path costs to neighboring nodes are simply link costs
- Step 2 [Get Next Node]
- Find neighboring node not in T with least-cost path from s
- Incorporate node into T
- Also incorporate the edge that is incident on that node and a node in T that contributes to the path
- Step 3 [Update Least-Cost Paths]
$-L(n)=\min [L(n), L(x)+w(x, n)]$ for all $n \notin T$
- If latter term is minimum, path from s to n is path from s to x concatenated with edge from x to n
- Algorithm terminates when all nodes have been added to T

Dijkstra's Algorithm Notes

- At termination, value $L(x)$ associated with each node x is cost (length) of least-cost path from s to x .
- In addition, T defines least-cost path from s to each other node
- One iteration of steps 2 and 3 adds one new node to T
-Defines least cost path from s tothat node

Example of Dijkstra's Algorithm

Results of Example Dijkstra's Algorithm

Ite rat ion	T	$\mathrm{L}(2)$	Path	$\mathrm{L}(3)$	Path	$\mathrm{L}(4)$	Path	$\mathrm{L}(5)$	Path	$\mathrm{L}(6$ $)$	Path
1	$\{1\}$	2	$1-2$	5	$1-3$	1	$1-4$	∞	-	∞	-
2	$\{1,4\}$	2	$1-2$	4	$1-4-3$	1	$1-4$	2	$1-4-5$	∞	-
3	$\{1,2,4\}$	2	$1-2$	4	$1-4-3$	1	$1-4$	2	$1-4-5$	∞	-
4	$\{1,2,4$, $5\}$	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$
5	$\{1,2,3$, $4,5\}$	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$
6	$\{1,2,3$, $4,5,6\}$	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$

Bellman-Ford Algorithm Definitions

- Find shortest paths from given node subject to constraint that paths contain at most one link
- Find the shortest paths with a constraint of paths of at most two links
- And so on
- $s=$ source node
- $w(i, j)=$ link cost from node i to node j
$-w(i, i)=0$
$-w(i, j)=\infty$ if the two nodes are not directly connected
$-\mathrm{w}(\mathrm{i}, \mathrm{j}) \geq 0$ if the two nodes are directly connected
- $h=$ maximum number of links in path at current stage of the algorithm
- $L_{n}(n)=$ cost of least-cost path from s to n under constraint of no more than h links

Bellman-Ford Algorithm Method

- Step 1 [Initialization]
$-L_{0}(n)=\infty$, for all $n \neq s$
$-L_{h}(s)=0$, for all h
- Step 2 [Update]
- For each successive $h \geq 0$
- For each $\mathrm{n} \neq \mathrm{s}$, compute $-L_{h+1}(n)=\min _{j}\left[L_{h}(j)+w(j, n)\right]$
- Connect n with predecessor node j that achieves minimum
- Eliminate any connection of n with different predecessor node formed during an earlier iteration
- Path from s to n terminates with link from j to n

Bellman-Ford Algorithm Notes

- For each iteration of step 2 with $\mathrm{h}=\mathrm{K}$ and for each destination node n, algorithm compares paths from s to n of length $K=1$ with path from previous iteration
- If previous path shorter it is retained
- Otherwise new path is defined

Example of Bellman-Ford Algorithm

$h=3$

Results of Bellman-Ford Example

h	$\mathrm{L}_{\mathrm{h}}(2)$	Path	$\mathrm{L}_{\mathrm{h}}(3)$	Path	$\mathrm{L}_{\mathrm{h}}(4)$	Path	$\mathrm{L}_{\mathrm{h}}(5)$	Path	$\mathrm{L}_{\mathrm{h}}(6)$	Path
0	∞	-								
1	2	$1-2$	5	$1-3$	1	$1-4$	∞	-	∞	-
2	2	$1-2$	4	$1-4-3$	1	$1-4$	2	$1-4-5$	10	$1-3-6$
3	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$
4	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$

Comparison

- Results from two algorithms agree
- Information gathered
- Bellman-Ford
- Calculation for node n involves knowledge of link cost to all neighboring nodes plus total cost to each neighbor from s
- Each node can maintain set of costs and paths for every other node
- Can exchange information with direct neighbors
- Can update costs and paths based on information from neighbors and knowledge of link costs
- Dijkstra
- Each node needs complete topology
- Must know link costs of all links in network
- Must exchange information with all other nodes

Evaluation

- Dependent on processing time of algorithms
- Dependent on amount of information required from other nodes
- Implementation specific
- Both converge under static topology and costs
- Converge to same solution
- If link costs change, algorithms will attempt to catch up
- If link costs depend on traffic, which depends on routes chosen, then feedback
-May result in instability

