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Routing in Circuit Switched 

Network 

• Many connections will need paths through more 
than one switch 

• Need to find a route 

—Efficiency 

—Resilience 

• Public telephone switches are a tree structure 

—Static routing uses the same approach all the time 

• Dynamic routing allows for changes in routing 
depending on traffic 

—Uses a peer structure for nodes 

 



Alternate Routing 

• Possible routes between end offices predefined 

• Originating switch selects appropriate route 

• Routes listed in preference order 

• Different sets of routes may be used at different 
times 

 



Alternate 

Routing 

Diagram 



Routing in Packet Switched 

Network 

• Complex, crucial aspect of packet switched 
networks 

• Characteristics required 

—Correctness 

—Simplicity 

—Robustness 

—Stability 

—Fairness 

—Optimality 

—Efficiency 

 



Performance Criteria 

• Used for selection of route 

• Minimum hop 

• Least cost 

—See Stallings appendix 10A for routing algorithms 

 



Example Packet Switched 

Network 



Decision Time and Place 

• Time 

—Packet or virtual circuit basis 

• Place 

—Distributed 

• Made by each node 

—Centralized 

—Source 

 



Network Information Source 

and Update Timing 

• Routing decisions usually based on knowledge of 
network (not always) 

• Distributed routing 
— Nodes use local knowledge 

— May collect info from adjacent nodes 

— May collect info from all nodes on a potential route 

• Central routing 
— Collect info from all nodes 

• Update timing 
— When is network info held by nodes updated 

— Fixed - never updated 

— Adaptive - regular updates 



Routing Strategies 

• Fixed 

• Flooding 

• Random 

• Adaptive 

 



Fixed Routing 

• Single permanent route for each source to 
destination pair 

• Determine routes using a least cost algorithm 
(appendix 10A) 

• Route fixed, at least until a change in network 
topology 

 



Fixed Routing 

Tables 



Flooding 

• No network info required 

• Packet sent by node to every neighbor 

• Incoming packets retransmitted on every link except 
incoming link 

• Eventually a number of copies will arrive at destination 

• Each packet is uniquely numbered so duplicates can be 
discarded 

• Nodes can remember packets already forwarded to keep 
network load in bounds 

• Can include a hop count in packets 



Flooding  

Example 



Properties of Flooding 

• All possible routes are tried 

—Very robust 

• At least one packet will have taken minimum 
hop count route 

—Can be used to set up virtual circuit 

• All nodes are visited 

—Useful to distribute information (e.g. routing) 



Random Routing 

• Node selects one outgoing path for 
retransmission of incoming packet 

• Selection can be random or round robin 

• Can select outgoing path based on probability 
calculation 

• No network info needed 

• Route is typically not least cost nor minimum 
hop 

 



Adaptive Routing 

• Used by almost all packet switching networks 

• Routing decisions change as conditions on the network 
change 

— Failure 

— Congestion 

• Requires info about network 

• Decisions more complex 

• Tradeoff between quality of network info and overhead 

• Reacting too quickly can cause oscillation 

• Too slowly to be relevant  



Adaptive Routing - Advantages 

• Improved performance 

• Aid congestion control (See chapter 13) 

• Complex system 

—May not realize theoretical benefits 

 

 

 



Classification 

• Based on information sources 

—Local (isolated) 

• Route to outgoing link with shortest queue 

• Can include bias for each destination 

• Rarely used - do not make use of easily available info 

—Adjacent nodes 

—All nodes 

 



Isolated Adaptive Routing 



ARPANET Routing Strategies(1) 

• First Generation 

—1969 

—Distributed adaptive 

—Estimated delay as performance criterion 

—Bellman-Ford algorithm (appendix 10a) 

—Node exchanges delay vector with neighbors 

—Update routing table based on incoming info 

—Doesn't consider line speed, just queue length 

—Queue length not a good measurement of delay 

—Responds slowly to congestion 

 



ARPANET Routing Strategies(2) 

• Second Generation 

—1979 

—Uses delay as performance criterion 

—Delay measured directly 

—Uses Dijkstra’s algorithm (appendix 10a) 

—Good under light and medium loads 

—Under heavy loads, little correlation between 
reported delays and those experienced 

 



ARPANET Routing Strategies(3) 

• Third Generation 

—1987 

—Link cost calculations changed 

—Measure average delay over last 10 seconds 

—Normalize based on current value and previous 
results 

 



Least Cost Algorithms 

• Basis for routing decisions 

— Can minimize hop with each link cost 1 

— Can have link value inversely proportional to capacity 

• Given network of nodes connected by bi-directional links 

• Each link has a cost in each direction 

• Define cost of path between two nodes as sum of costs 
of links traversed 

• For each pair of nodes, find a path with the least cost 

• Link costs in different directions may be different 

— E.g. length of packet queue 



Dijkstra’s Algorithm Definitions 

• Find shortest paths from given source node to all other 
nodes, by developing paths in order of increasing path 
length 

• N = set of nodes in the network 

• s = source node 

• T = set of nodes so far incorporated by the algorithm 

• w(i, j) = link cost from node i to node j 
— w(i, i) = 0 

— w(i, j) =  if the two nodes are not directly connected 

— w(i, j)  0 if the two nodes are directly connected 

• L(n) = cost of least-cost path from node s to node n 
currently known 
— At termination, L(n) is cost of least-cost path from s to n 



Dijkstra’s Algorithm Method 

• Step 1 [Initialization]  

— T = {s} Set of nodes so far incorporated consists of only source node 

— L(n) = w(s, n)   for n ≠ s 

— Initial path costs to neighboring nodes are simply link costs 

• Step 2 [Get Next Node] 

— Find neighboring node not in T with least-cost path from s  

— Incorporate node into T 

— Also incorporate the edge that is incident on that node and a node in T 
that contributes to the path 

• Step 3 [Update Least-Cost Paths] 

— L(n) = min[L(n), L(x) + w(x, n)] for all n  T 

— If latter term is minimum, path from s to n is path from s to x 
concatenated with edge from x to n   

• Algorithm terminates when all nodes have been added to T 



Dijkstra’s Algorithm Notes 

• At termination, value L(x) associated with each 
node x is cost (length) of least-cost path from s 
to x. 

• In addition, T defines least-cost path from s to 
each other node 

• One iteration of steps 2 and 3 adds one new 
node to T 

—Defines least cost path from s tothat node 



Example of Dijkstra’s Algorithm 



Results of Example  

Dijkstra’s  Algorithm 

Ite
rat
ion  

T L(2) Path L(3) Path L(4) Path L(5) Path L(6
) 

Path 

1 {1} 2 1–2 

 

5 1-3 1 1–4   -  

 

- 

2 {1,4} 2 1–2 

 

4 1-4-3 1 1–4 2 1-4–5  

 

- 

3 {1, 2, 4} 

 

2 1–2 

 

4 1-4-3 1 1–4 2 1-4–5  

 

- 

4 {1, 2, 4, 
5} 

 

2 1–2 

 

3 1-4-5–3 1 1–4 2 1-4–5 4 1-4-5–6 

5 {1, 2, 3, 
4, 5} 

 

2 1–2 

 

3 1-4-5–3 1 1–4 2 1-4–5 4 1-4-5–6 

6 {1, 2, 3, 
4, 5, 6} 

 

2 1-2 

 

3 1-4-5-3 1 1-4 2 1-4–5 4 1-4-5-6 



Bellman-Ford Algorithm 

Definitions 

• Find shortest paths from given node subject to 
constraint that paths contain at most one link 

• Find the shortest paths with a constraint of paths of at 
most two links 

• And so on  

• s = source node 

• w(i, j) = link cost from node i to node j 
— w(i, i) = 0 

— w(i, j) =  if the two nodes are not directly connected 

— w(i, j)  0 if the two nodes are directly connected 

• h = maximum number of links in path at current stage 
of the algorithm 

• Lh(n) = cost of least-cost path from s to n under 
constraint of no more than h links 



Bellman-Ford Algorithm Method 

• Step 1 [Initialization] 
— L0(n) = , for all n  s 

— Lh(s) = 0, for all h 

• Step 2 [Update]  

• For each successive h  0 
— For each n ≠ s, compute 

— Lh+1(n)=min
j[Lh(j)+w(j,n)] 

• Connect n with predecessor node j that achieves 
minimum 

• Eliminate any connection of n with different predecessor 
node formed during an earlier iteration 

• Path from s to n terminates with link from j to n 

 



Bellman-Ford Algorithm Notes 

• For each iteration of step 2 with h=K and for 
each destination node n, algorithm compares 
paths from s to n of length K=1 with path from 
previous iteration 

• If previous path shorter it is retained 

• Otherwise new path is defined 

 



Example of Bellman-Ford 

Algorithm 



Results of Bellman-Ford 

Example 

h Lh(2) Path Lh(3) 

 

Path 

 

Lh(4) 

 

Path 

 

Lh(5) 

 

Path 

 

Lh(6) 

 

Path 

 

0   -  -  -  -  - 

1 2 1-2 5 1-3 1 1-4  -  - 

2 2 1-2 4 1-4-3 1 1-4 2 1-4-5 10 1-3-6 

3 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6 

4 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6 



Comparison 

• Results from two algorithms agree 

• Information gathered 

— Bellman-Ford 

• Calculation for node n involves knowledge of link cost to all 
neighboring nodes plus total cost to each neighbor from s 

• Each node can maintain set of costs and paths for every other node 

• Can exchange information with direct neighbors 

• Can update costs and paths based on information from neighbors 
and knowledge of link costs 

— Dijkstra 

• Each node needs complete topology 

• Must know link costs of all links in network 

• Must exchange information with all other nodes 

 



Evaluation 

• Dependent on processing time of algorithms 

• Dependent on amount of information required 
from other nodes 

• Implementation specific 

• Both converge under static topology and costs 

• Converge to same solution 

• If link costs change, algorithms will attempt to 
catch up 

• If link costs depend on traffic, which depends 
on routes chosen, then feedback 
—May result in instability 


