IPv6: An Introduction

Outline

- Problems with IPv4
- Basic IPv6 Protocol
- IPv6 features
 - Auto-configuration, QoS, Security, Mobility
- Transition Plans

Internet Protocol

Transports a datagram from source host to destination, possibly via several intermediate nodes ("routers")

Service is:

Unreliable: Losses, duplicates, out-of-order delivery

- Best effort: Packets not discarded capriciously, delivery failure not necessarily reported
- *Connectionless:* Each packet is treated independently

IP Datagram Header

0	4 8	8 1	16 19				
VERS	HLEN	TOS	TOTAL LENGTH				
	IDENTIF	ICATION	FLAG	FRAGMENT OFFSET			
TTL		PROTOCOL	CHECKSUM				
SOURCE ADDRESS							
DESTINATION ADDRESS							
OPTIONS (if any) + PADDING							

Problems with IPv4: Limited Address Space

- IPv4 has 32 bit addresses.
- Flat addressing (only netid + hostid with "fixed" boundaries)
- Results in inefficient use of address space.
- Class B addresses are almost over.
- Addresses will exhaust in the next 5 years.
- IPv4 is victim of its own success.

Problems with IPv4: Routing Table Explosion

- IP does not permit route aggregation (limited supernetting possible with new routers)
- Mostly only class C addresses remain
- Number of networks is increasing very fast (number of routes to be advertised goes up)
- Very high routing overhead
 - lot more memory needed for routing table
 - lot more bandwidth to pass routing information
 - lot more processing needed to compute routes

Problems with IPv4: Header Limitations

- Maximum header length is 60 octets. (Restricts options)
- Maximum packet length is 64K octets. (Do we need more than that ?)
- ID for fragments is 16 bits. Repeats every 65537th packet. (Will two packets in the network have same ID?)
- Variable size header.

(Slower processing at routers.)

No ordering of options.
 (All routers need to look at all options.)

Problems with IPv4: Other Limitations

Lack of quality-of-service support.

- Only an 8-bit ToS field, which is hardly used.
- Problem for multimedia services.
- No support for security at IP layer.
- Mobility support is limited.

IP Address Extension

- Strict monitoring of IP address assignment
- Private IP addresses for intranets
 - Only class C or a part of class C to an organization
 - Encourage use of proxy services
 - Application level proxies
 - Network Address Translation (NAT)
- Remaining class A addresses may use CIDR
- Reserved addresses may be assigned

But these will only postpone address exhaustion. They do not address problems like QoS, mobility, security.

IPng Criteria

- At least 10⁹ networks, 10¹² end-systems
- Datagram service (best effort delivery)
- Independent of physical layer technologies
- Robust (routing) in presence of failures
- Flexible topology (e.g., dual-homed nets)
- Better routing structures (e.g., aggregation)
- High performance (fast switching)
- Support for multicasting

IPng Criteria

- Support for mobile nodes
- Support for quality-of-service
- Provide security at IP layer
- Extensible
- Auto-configuration (plug-and--play)
- Straight-forward transition plan from IPv4
- Minimal changes to upper layer protocols

IPv6: Distinctive Features

- Header format simplification
- Expanded routing and addressing capabilities
- Improved support for extensions and options
- Flow labeling (for QoS) capability
- Auto-configuration and Neighbour discovery
- Authentication and privacy capabilities
- Simple transition from IPv4

IPv6 Header Format

IPv6 Header Fields

Version number (4-bit field)

The value is always 6.

Flow label (20-bit field)

Used to label packets requesting special handling by routers.

- Traffic class (8-bit field)
 Used to mark classes of traffic.
- Payload length (16-bit field)
 Length of the packet following the IPv6 header, in octets.
- Next header (8-bit field)

The type of header immediately following the IPv6 header.

IPv6 Header Fields

Hop limit (8-bit field)

Decremented by 1 by each node that forwards the packet. Packet discarded if hop limit is decremented to zero.

Source Address (128-bit field) <u>An address of the initial sender of the packet.</u>

Destination Address (128-bit field)

An address of the intended recipient of the packet. May not be the ultimate recipient, if Routing Header is present.

Header Changes from IPv4

- Longer address 32 bits \rightarrow 128 bits
- Fragmentation field moved to separate header
- Header checksum removed
- Header length removed (fixed length header)
- Length field excludes IPv6 header
- Time to live \rightarrow Hop limit
- Protocol \rightarrow Next header
- 64-bit field alignment
- TOS replaced by flow label, traffic class

Extension Headers

- Less used functions moved to extension headers.
- Only present when needed.
- Processed only by node identified in IPv6 destination field.
 => much lower overhead than IPv4 options
 Exception: Hop-by-Hop option header
- Eliminated IPv4's 40-byte limit on options
- Currently defined extension headers: Hop-by-hop, Routing, Fragment, Authentication, Privacy, End-to-end.
- Order of extension headers in a packet is defined.
- Headers are aligned on 8-byte boundaries.

Address Types

Unicast Address for a single interface.
 Multicast Identifier for a set of interfaces.
 Packet is sent to <u>all</u> these interfaces.
 Anycast Identifier for a set of interfaces.
 Packet is sent to the <u>nearest</u> one.

Text Representation of Addresses

- HEX in blocks of 16 bits
 - BC84:25C2:0000:0000:55AB:5521:0018
- leading zero suppression
 BC84 : 25C2 : 0 : 0 :55AB : 5521 : 18
- Compressed format removes strings of Os
 BC84 : 25C2 :: 55AB : 5521 : 18
 - :: can appear only once in an address.
 - can also be used to compress leading or trailing **O**s
- Mixed Notation (X:X:X:X:X:d.d.d.d) e.g., ::144.16.162.21

IPv6 Addresses

128-bit addresses

- Multiple addresses can be assigned to an interface
- Provider-based hierarchy to be used in the beginning
- Addresses should have 64-bit interface IDs in EUI-64 format
- Following special addresses are defined :
 - IPv4-mapped
 - IPv4-compatible
 - link-local
 - site-local

Unicast Addresses Examples

Global Aggregate Address

Link local address

10 bits	54 bits	64 bits				
1111111010	0	Interface ID				
Site-local address						

Site-local address

10 bits	38 bits	16 bits	64 bits
1111111011	0	subnet ID	Interface ID

Multicast Address

8 bits	4	4		112 bits
111111111	flags	scope		Group ID
		I		
Flags		000T		3 bits reserved
		T= 0	ļ	permanent
		T= 1	t	transient
Scope		2	l	link-local
		5	9	site-local
		8	(org-local
		Е	Q	global
			<u> </u>	

Permanent groups are formed independent of scope.

IPv6 Routing

- Hierarchical addresses are to be used.
- Initially only provider-based hierarchy will be used.
- Longest prefix match routing to be used.
 (Same as IPv4 routing under CIDR.)
- OSPF, RIP, IDRP, ISIS, etc., will continue as is (except 128-bit addresses).
- Easy renumbering should be possible.
- Provider selection possible with <u>anycast</u> groups.

QoS Capabilities

- Protocol aids QoS support, not provide it.
- Flow labels
 - To identify packets needing same quality-of-service
 - 20-bit label decided by source
 - Flow classifier: Flow label + Source/Destination addresses
 - Zero if no special requirement
 - Uniformly distributed between 1 and FFFFFF
- Traffic class
 - 8-bit value
 - Routers allowed to modify this field

IPv6: Security Issues

Provision for

- Authentication header
 - Guarantees authenticity and integrity of data
- Encryption header
 - Ensures confidentiality and privacy
- Encryption modes:
 - Transport mode
 - Tunnel mode
- Independent of key management algorithm.
- Security implementation is mandatory requirement in IPv6.

Mobility Support in IPv6

- Mobile computers are becoming commonplace.
- Mobile IPv6 allows a node to move from one link to another without changing the address.
- Movement can be heterogeneous, i.e., node can move from an Ethernet link to a cellular packet network.
- Mobility support in IPv6 is more efficient than mobility support in IPv4.
- There are also proposals for supporting micro-mobility.