
SECTION – B

HTTP

• HTTP stands for Hypertext Transfer

Protocol. It’s the network protocol used to

deliver virtually all files and other data

(collectively called resources) on the World

Wide Web, whether they’re HTML files,

image files, query results, or anything else.

Usually, HTTP takes place through TCP/IP

sockets.

What is HTTP?

• A browser is an HTTP client because it

sends requests to an HTTP server (Web

server), which then sends responses back

to the client. The standard (and default)

port for HTTP servers to listen on is 80,

though they can use any port.

What is HTTP?

• HTTP is used to transmit/ resources not just

files. A resource is some chunk of information

that can be identified by a URL (it’s the R in

URL). The most common kind of resource is a

file, but a resource may also be dynamically-

generated query result, the output of a CGI

script, a document that is available in several

languages or something else.

What are “Resources”?

• While learning HTTP, it may help to think a

resource as similar to a file, but more

general. As a practical matter almost all

HTTP resources are currently either files or

server side script output.

What are “Resources”

• Used to access data on the WWW

–Plain text

–Hypertext (hyper links or links to other pages

embedded in them)

–Audio

–Video

–others

Usage

Functions like a combination of FTP and
SMTP

• FTP as it transfers files and uses the
services of TCP.

–Only one TCP connection

• SMTP as data transferred between client
and server looks like SMTP messages.

– Format of message controlled by MIME-like
headers (Multipurpose Internet Mail Extensions)

– HTTP messages are delivered immediately.

Function

• Client sends a request

• Server sends a response

• Similar to mail request and reply.

• Data in the form of a letter with
MIME-like format.

HTTP is very simple

• Like most network protocols, HTTP
uses the client-server model:

• An HTTP client opens a connection
and sends a request message to an
HTTP server.

• The server then returns a response
message, usually containing the
source that was requested.

Structure of HTTP Transactions

• After delivering the response, the server

closes the connection (making HTTP a

stateless protocol, i.e. not maintaining any

connection information between

transactions)

• Cookies are maintained in the client

machine.

Stateless Protocol

• The format of the request and response messages

are similar , and English-oriented.

 Both kinds of messages consist of:

– an initial line.

– Zero or more header lines.

– a blank line (i.e. CRLF(carriage return and line

feed) by itself) and

– An optional message body (e.g. a file, or query data

or query output)

Structure of HTTP Transactions

• Put another way, the format of an
HTTP message is:

• <initial line, different for request vs.
response>

• Header1:value1

• Header2:value2

• Header3:value3

Structure of HTTP Transactions

Request Messages

Initial line

Headers

Blank line

Body

• The initial line is different for the request
than for the response. A request line has
three parts, separated by spaces: a
method name, the local path of the
requested resource, and the version HTTP
being used. A typical request line is:

–GET/path/to/file/index.html

 HTTP/1.0

Initial Request Line

• GET is the most common HTTP method: it

says “give me this resource”. Other methods

include POST and HEAD.

• Method names are always uppercase

• The path is the part of the URL after the host

name, also called the request URI (a URI is

like URL, but more general)

• The HTTP version always takes the form

“HTTP/x.x” uppercase.

Initial Request line

• The initial response line, called the status line,
also has three parts separated by spaces: the
HTTP version, a response status code that
gives the result of the request, and an English
reason phrase describing the status code.
Typical status lines are:

– HTTP/1.0.200 OK

• Or

– HTTP/1.0.404 Not Found

Initial Response Line
(Status Line)

• The HTTP version is in the same format as

in the request line, “HTTP/x.x”. The status

code is meant to be computer-readable;

the reason phrase is meant to be human-

readable, and may vary. The status code is

a three-digit integer, and the first digit

identifies the general category of response:

Initial Response Line
(Status Line)

• 1xx indicates an informational message
only.

• 2xx indicates success of some kind.

• 3xx redirects the client to another URL

• 4xx indicates an error on the client’s
part.

• 5xx indicates an error on the server’s
part.

Initial Response Line
(Status Line)

• The most common status codes are”

• 200 OK

– The request succeeded, and the resulting
resource (e.g. file or script output) is
returned in the message body.

• 404 Not Found

– The requested resource doesn’t exist.

• 301 Moved Permanently.

• 302 Moved Temporarily.

Initial Response Line
(Status Line)

• 303 See Other (HTTP 1.1 only)

– The resource has moved to another URL (given
by the Location: response header), and should
be automatically retrieved by the client. This is
often used by a CGI script to redirect the
browser to an existing file.

• 500 Server Error

– An unexpected server error. The most common
cause is a server side script that has bad
syntax, fails or otherwise can’t run correctly.

Initial Response Line
(Status Line)

• Header lines provide information
about the request or response, or
about the object sent in the message
body.

Header Lines

• The header lines are in the usual text
header format, which is:

• One line per header

• Of the form “Header-Name: value”

• Ending with CRLF. It’s the same
format used for email and news
postings.

Header Lines

• As noted above, they should end in
CRLF.

• The header name is not case-
sensitive (though the value may be).

• Any number of spaces or tabs may be
between the “:” and the value.

• Header lines beginning with space or
tab are actually part of the previous
header line, folded into multiple lines
for easy reading.

Header Lines

• Thus, the following two headers are
equivalent:

–Header1: some-long-value-1a, some-
long-value-1b

–HEADER1: some-long-value-1a,

–some-long-value-1b.

Header Lines

• For Net-politeness, consider including

these headers in your requests:

• The From: header gives the email

address of whoever’s making the

request, or running the program

doing so. (This must be user-

configurable, for privacy concerns.)

Header Lines

• The User-Agent: header identifies the

program that’s making the request, in the

form “Program=name/x.xx”, where x.xx is

the (mostly) alphanumeric version of the

program. For example, Netscape 3.0 sends

the header “User-agent: Mozilla/3.0Gold”.

• If you’re writing servers, consider including

these headers in your responses:

• The Server: header is analogour to the

User-Agent: header: it identifies the server

software in the form ”Program-

name/x.xx”. For example, one beta

version of Apache’s server returns

“Server:Apache/1.2b3-dev”.

Header Lines

• The Last-Modified: header gives the

modification date of the resource that’s

being returned. It’s used in caching and

other bandwidth-saving activities. Use

Greenwich Mean Time, in the format

– Last-Modified: Fri, 31 Dec 1999

 23:59:59 GMT

• Request Type

• URL

• Version

Request Line

• Categories request

 messages into several

 methods.

Request Type

 Uniform Resource Locator

 Web page/document address

–Method

–Host

–Port Number

–Path

URL

URL

Path

Protocol used to retrieve the document

• Gopher

• FTP
HTTP

• News

• TELNET

Method

• Host

–Computer where information is
located.

• Port Number

–Separated by a colon

–Default is port 80

• Path

–Pathname of the file on the server

Address

• Current version 1.1

• 1.0 and 0.9 still in use

Version

• actual command or request that a
client issues to the server

–GET

• client wants to retrieve a document

• Server responds with the contents of the
document

–HEAD

• client wants information about the
document but not the actual document

Methods

• POST

– client provides some information to the
server

• PUT

–Client provides a new or replacement
document to be stored on the server.

• PATCH

–Similar to PUT but only a list of
differences to be made.

Methods

• COPY

– copy a file to another location

• MOVE

– moves a file to another location

• DELETE

– remove a document on the server

Methods

• LINK

– creates a link from a document to
another location.

• UNLINK

– delete links created with LINK

• OPTION

– used by client to ask server about
available options

Methods

• An HTTP message may have a body of data

sent after the header lines. In a response,

this is where the requested resource is

returned to the client (the most common

use of the message body), or perhaps

explanatory text if there’s an error. In a

request, this is where user-entered data or

uploaded files are sent to the server.

The Message Body

• If an HTTP message includes a body,
there are usually header lines in the
message that describe the body. In
particular,

–The Content-Type: header gives the
MIME-type of the data in the body, such
as text/html or image/gif.

– The Content-Length: header gives the
number of bytes in the body.

The Message Body

• To retrieve the file at the URL

–http://www.somehost.com/path/file.html

• first open a socket to the host

 www.somehost.com, port 80 (use the
default port of 80 because none is
specified in the URL)

Sample HTTP Exchange

http://www.somehost.com/path/file.html
http://www.somehost.com/

• Then, send something like the
following through the socket:

–GET/path/file.html HTTP/1.0

– From: someuser@marshall.com

–User-Agent: HTTPTool/1.0

– [blank line here]

Sample HTTP Exchange

mailto:someuser@marshall.com

• The server should respond with
something like the following, sent
back through the same socket:

–HTTP/1.0 200 OK

–Date: Fri,31 Dec 1999 23:59:59 GMT

–Content-Type: text/html

–Content-Length:1354

Sample HTTP Exchange

• <html>

• <body>

• <h1> Good Day !! </h1>

• (more file contents)

• .

• .

• .

• </body>

• </html>

• After sending the response, the server closes the
socket.

Sample HTTP Exchange

• A HEAD request is just like GET request, except
it asks the server to return the response headers
only, and not the actual resource (i.e. no
message body). This is useful to check
characteristics of a resource without actually
downloading it, thus saving bandwidth. Use
HEAD when you don’t actually need a file’s
contents.

• The response to a HEAD request must never
contain a message body, just the status line and
headers.

The HEAD Method

• A POST request is used to send data to the
server to be processed in some way, like by a
CGI script. A POST request is different from a
GET request in the following ways:

– There’s a block of data sent with the request, in the
message body. There are usually extra headers to
describe this message body, like Content-Type: and
Content-Length:.

– The request URI is not a resource to retrieve: it’s
usually a program to handle the data you’re
sending.

– The HTTP response is normally program output not
a static file.

The POST Method

• The most common use of POST, by
far, is to submit HTML form data to
CGI scripts. In this case, the
Content-type: header is usually
application/x-www-form-urlencoded,
and the Content-Length: header
gives the length of the URL-encoded
form data The CGI scripts receives
the message body through STDIN,
and decodes it.

The POST Method

• Here’s a typical form submission,
using POST:

–POST/path/script.cgi HTTP/1.0

– From: frog@marshall.com

–User-Agent: HTTPTool/1.0

–Content-Type:application/x-www-form-
urlencoded

–Content-Length:32

–Home=Cosby&favorite+flavor=flies

The POST Method

mailto:frog@marshall.com

