
Goal  Derive the radar equation for an isolated target 

Measurement of the echo power received from a target 

provides useful information about it. 

The radar equation provides a relationship between the 

received power, the characteristics of the target, and 

characteristics of the radar itself. 

Steps in deriving the radar equation for an isolated target: 

 

1) Determine the radiated power per unit area (the power flux 

density) incident on the target 

2) Determine the power flux density scattered back toward the 

radar (the radar cross section) 

3) Determine the amount of power collected by the antenna 

 (the antenna effective area). 
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Common ways to express power (basic unit: watts): 

decibels 
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Power flux density (S, watts/m2) at radius r from an 

isotropic antenna 
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Consider an isotropic antenna 

  

An antenna that transmits radiation equally in all directions  

 

Where Pt is the transmitted power 
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The gain function 

The gain* is the ratio of the power flux density at radius r, 

azimuth , and elevation  for a directional antenna, to the 

power flux density for an isotropic antenna radiating the same 

total power. 

So from (1) 

(2) 

(3) 

*strictly speaking, the gain also incorporates any absorptive losses at the antenna and in 

the waveguide to the directional coupler 



What does the gain function look like? 

Note elevation and azimuth angle scales 

Gain in dB 



The gain function in 2D 

Note that the width of the main 

beam is proportional to 

wavelength and inversely 

proportional to the antenna 

aperture 

Therefore:  

Large wavelength radars = big 

antenna 

Small wavelength radars = small 

antenna for same beam width 

10 cm 

0.8 cm 

Beam width (3 db down from peak) 



Problems 

associated with 

sidelobes 

Horizontal “spreading” 

of weaker echo to the 

sides of a storm… 

 

Echo from sidelobe is 

interpreted to be in the 

direction of the main 

beam, but the magnitude 

is weak because power in 

sidelobe is down ~ 25 db. 



Problems 

associated with 

sidelobes 

Vertical “spreading” of 

weaker echo to the top 

of a storm… 

 

Echo from sidelobe is 

interpreted to be in the 

direction of the main 

beam, but the magnitude 

is weak because power in 

sidelobe is down ~ 25 db. 



A way to reduce sidelobes: 

 

 Tapered Illumination 

Three effects: 

 

1) A reduction in sidelobe levels  

    (desirable) 

2) A reduction in maximum power 

  gain (undesirable) 

 

3) An increase in beamwidth 

   (undesirable) 

Example: Parabolic illumination to zero at reflector edge for a circular paraboloid 

antenna leads to a sidelobe reduction of 7 db, a gain reduction of 1.25 db, and an 

increase in beamwidth of 25% 



The shape of beam depends on the shape of an antenna 

For meteorological 

applications, the circular 

paraboloid antenna is most 

commonly used – beam has 

no preferred orientation 



Practical Antenna Beamwidths: 

The smaller the antenna beamwidth, the better the angular resolution. 

 

The smaller the antenna beamwidth, the bigger the antenna. 

 

The smaller the antenna beamwidth, the longer it takes to scan a volume. 

Most meteorological radars (e.g. NEXRADS) use beams of ~ 1
o
 width 

Suppose you wish to scan 360
o
  and 20 elevations to completely sample 

Deep storms in the area. 

 

There are 360  20 = 7200 1
o
 elements to be scanned.  Required dwell 

time for a sufficient number of pulses to average per beam width is 

about 0.05 seconds. 

 

Total time = 7200  0.05 = 360 sec = 6 minutes 

 

When considering evolution of convective storms, 6 min is a long time! 
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Some typical values: 

 

 Gain = 10,000 (40 db) 

 Transmitted Power = 100,000 Watts 

 Target is at 100 km range 

 

 Incident Power Flux Density = 8 x 10-3 Watts/m2 



Radar cross section: Ratio of the power flux density scattered by 

the target in the direction of the antenna to the power flux density 

incident on the target, both measured at the radius of target.  
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Ratio of power flux density 

received at the antenna (Sr) to 

the power flux density incident 

on the object at radius (r) from 

the antenna 

The 4r2 is required because the backscattered power flux density 

is measured at the antenna, not at the location of the object, where 

it would be greater by 4r2  
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PROBLEM: We don’t measure Sscattered at r, we measure it at radar 

(4) 

(5) 



In general, the radar cross section of an object depends on: 

 

1) Object’s shape 

 

2) Size (in relation to the radar wavelength) 

 

3) Complex dielectric constant and conductivity of the material 

 (related to substances ability to absorb/scatter energy) 

 

4) Viewing aspect 



Radar cross section of an aircraft: 





Radar cross section of a sphere (e.g. small raindrop) 

Note axes: 

a is sphere 

radius 

Rayleigh region: a < l/2   l/6  
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Radar cross section 
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Substituting: 

(5) 

(3) 

Some typical values: 

 

 Gain = 10,000 (40 db) 

 Transmitted Power = 100,000 Watts 

 Target is at 100 km range 

 Radar cross section = 1 m2 

 

 Power Flux Density  

 at the antenna = 6.3 x 10-14 Watts/m2!! 

(6) 
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From antenna theory - Relationship between gain and effective area: 
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Substituting for Ae in (7): 

(9) 

Which we will write as: 
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This is the radar equation for a single isolated target (e.g. an 

airplane, a ship, a bird, one raindrop, the moon…) 

(10) 
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Written another way in terms of antenna effective area: 
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What do these equations tell us about radar returns from a single target? 



Goal  Derive the radar equation for an distributed target 

Distributed target: A target consisting of many scattering 

elements, for example, the billions of raindrops that might be 

illuminated by a radar pulse. 

Contributing region: Volume consisting of all objects from which 

the scattered microwaves arrive back at the radar simultaneously. 

 

Spherical shell centered on the radar 

 - Radial extent determined by the pulse duration (half the 

   pulse duration) 

 -Angular extent determined by the antenna beam pattern 



Azimuthal coordinate:  

 

The beamwidth in the azimuthal  

direction: rQ, where Q is the arc  

length between the half power points of the beam  

 

Elevation coordinate:  

 

The beamwidth in the elevation direction: rF , where F is the arc 

length between the half power points of the beam 

 

The cross sectional area of beam:  

 

Contributing volume length = half the pulse length: 

Pulse volume 
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Consider the NEXRAD radar 

 

Pulse duration  = 1.57 ms 

Angular circular beamwidth = 0.0162 radians  
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If the concentration of raindrops is a typical 1/m
3
, then the pulse 

volume contains 

   520 million raindrops! 



Note that the “pulse volume” is only an approximation. 

 

Recall the antenna beam pattern: 

About half of the transmitted 

power falls outside the 3 db 

cone. 

 

In addition, the Gain 

function is such that the 

particles on the beam axis 

receive more power than 

those off axis, so the 

illumination in the pulse 

volume is not uniform.  CAVEATS 



The radar cross section of a distributed target 

Assumptions: 

 

1) The radial extent (h/2) of the contributing region is small compared to the 

 range (r) so that the variation of Sinc across h/2 can be neglected. (good 

assumption) 

 

2) Sinc is considered uniform across the conical beam and zero outside – the 

spatial variation of the gain function can be ignored. (not good, but we are 

stuck with this one) 

 

3) Scattering by other objects toward the contributing region must be small so 

that interference effects with the incident wave do not modify its amplitude. 

(good for wavelengths > 3 cm) 

 

4) Scattering or absorption of microwaves by objects between the radar and 

contributing region do not modify the amplitude of Sinc appreciably. (good 

for wavelengths > 3 cm) 

 



Is the radar cross section of a distributed 

target equal to the sum of the radar cross 

sections of the individual particles that 

comprise the distributed target? 
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Consider two same-sized particles that are n wavelengths + ¼ wavelength apart 

n wavelengths + ¼ wavelength 

Incident waves scattered by each particle will be ½ wavelength out of 

phase since waves must travel out and back 

 

DESTRUCTIVE INTERFERENCE: NET AMPLITUDE = 0 

Consider two same-sized particles that are n wavelengths + ½ wavelength apart 

n wavelengths + ½ wavelength 

Incident waves scattered by each particle will be an integer wavelength 

apart and in phase since waves must travel out and back 

 

CONSTRUCTIVE INTERFERENCE: NET AMPLITUDE = LARGE 



Is the radar cross section of a distributed 

target equal to the sum of the radar cross 

sections of the individual particles that 

comprise the distributed target? 
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Not clear, since there are destructive and constructive interference 

effects occurring within the backscattered waves from the array of 

particles. 

 

Let’s look at the problem mathematically to determine if the equation 

above is true… 
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Consider a radar transmitting a wave whose electric field is represented as: 

Eo = amplitude 

 = 2ft = angular frequency 

The wave incident on the jth particle at range rj is: 

The backscattered electric field from the jth particle, when arriving at the radar, 

will be proportional to the amplitude of the incident wave, and inversely 

proportional to the range 

(13) 

(14) 

(15) 
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Total backscattered field is the phasor sum of the contributions from all of the 

individual scattering objects:  

Rewrite this equation using the relationship: 

The power flux density returned to the radar is proportional to the square of the 

Electric field, where the proportionality constant is Z0, the characteristic 

impedence of free space. 

Permittivity 

Permeability 

complex conjugate 

(16) 

(17) 
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Substituting (1) into (2) 

Which can be broken up for terms where j = k and those where j  k 

Interference terms 

(18) 

(19) 

(20) 
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Interference terms 

Value of double summation depends on the scattering properties of the 

individual objects and their positions.  If particles are randomly 

distributed, then the phase increments are randomly distributed. 

If we assume particles to “reshuffle” to a new random distribution between 

successive pulses, then the average of the double sum term over a number of 

pulses must approach zero, since rj – rk will change for all particles 

(20) 








4

122

1 
inc

r

S

S
r


j

j
inc

r
r

S
S 2

24




inc

r

j

j
S

S
r 222 4  


j

j
inc

r
r

S
S 2

2


2

2

1

r

S
S inc

r




The average power flux density over a number of pulses is therefore: 

Let’s suppose there is only one particle.  Then: 

Applying the definition of the radar cross section: 

Since the radar cross section is related to the proportionality constant , we 

can write: 

(21) 
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(25) 



Implication of the above mathematical exercise 

To eliminate interference effects, and obtain a true estimate of the average 

power flux density returned to the radar, we must average the power flux 

density from a sufficient number of  pulses.   

 

How many pulses are sufficient?  It depends on application…  

NCAR S-POL radar often uses 64 pulse average, leading to an average over 

a sweep of one beam width with a rotation rate of 8°/sec 

 

Number of pulses in average also determines Doppler velocity resolution, as 

we shall see in a later chapter… 
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Radar equation for single target: 

(26) 
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Radar equation for a distributed target: 
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Where Vc is the 

contributing volume 
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Substituting (12) into (28), and (28) into the radar equation (11):  
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The above equation applies for a uniform beam.  For a Gaussian beam, a 

correction term 2ln(2) has to be added 
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(31) 



Note:   The returned power for a single target varies as r-4. 

Why? 
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The returned power for a distributed target varies as r-2 
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Reason:  As contributing volume grows with distance, more targets are 

added.  Number of targets added is proportional to r2, which reduces the 

dependence of the returned power from r-4 to r-2. 

Note:   The returned power for a single target varies as r-4. 
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The returned power for a distributed target varies as r-2 

  







F Q

2

22

2 )2ln(1024 r
GP

c
P

avg

tr


l


(31) 

constant radar 

characteristics 

target 

characteristics 


