8051 Addressing Mode and
Instruction Set

4

SILICON LABS

8051 Instruction Set

¢ Addressing Modes
» Register addressing
Direct addressing
Indirect addressing
Immediate constant addressing
Relative addressing
Absolute addressing
Long addressing
» Indexed addressing

¢ Instruction Types
» Arithmetic operations

» Logical operations
» Data transfer instructions

YV VYV V VY V

> Boolean variable instructions

» Program branching instructions @

SILICON LABS

Introduction

¢ A computer instruction is made up of an operation code (op-
code) followed by either zero, one or two bytes of operands

¢ The op-code identifies the type of operation to be performed
while the operands identify the source and destination of the
data

¢ The operand can be:
» The data value itself
» A CPU register
» A memory location
» An 1/O port

¢ If the instruction is associated with more than one operand,
the format is always:

Instruction Destination, Source

~>

SILICON LABS

Memory Organization

PROGRAM/DATA MEMORY
(FLASH)
0x1007F| Scrachpad Memory
0x10000 (DATA only)
OxFFFF
OxFEOO RESERVED
OxFDFF
FLASH
(In-System
Programmable in 512
Byte Sectors)
0x0000

OxFF

0x80
0x7F

0x30
Ox2F

0x20
Ox1F

0x00

OXFFFF

0x1000

Rl XRAM - 4096 Bytes

(accessable using MOVX
instruction)

0x0000

DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE

Upper 128 RAM Special Function
(Indirect Addressing Register's
Only) (Direct Addressing Only)
™
(Direct and Indirect
Addressing) Lower 128 RAM
> (Direct and Indirect
Bit Addressable Addressing)
General Purpose
Registers /

EXTERNAL DATA ADDRESS SPACE

Off-chip XRAM space

The memory
organization of
C8051F020 is
similar to that of
a standard 8051

Program and
data memory
share the same
address space
but are
accessed via
different
Instruction types

~>

SILICON LABS

Internal Data Memory

DATA MEMORY (RAM) ME:;S Bit Addrass
INTERMAL DATA ADDRESS SPACE 7F
OxFF Uppar 128 RAM Special Funciion
(Indirect Addressing Registar's & |
enena
Cily) (Direct Addressing Cinly) Fumposs
N RAhd
{Direct and Indirect
Addressing] Lower 128 RAM
s, (Diact and Indiract a0
Bit Addresssbis . Addressing) =} 2F FF|7E|7D | 7Cc | 7B | 7A| 78| 78
' i ZE 7l || a3z 71]| 70
W > ¢ Z0 8F |8E |80 |BC | BB | BA | B0 | 88
Registers 2C a7 (oo (o5 [8g [ea [e2 |81 @0

20 5F | SE | S0 | 5C | 5B | SA | 58 | 458
57 |88 |85 | &4 | 55 | 8= | 59 | 854
4F |4E | 4D | 4C | 4B | 4a | 49 | 42
47 | 5 | 45 | 44 | 43 | 42 | 41) 40
3F | 3E | 30 | 3C | 3B | 3A | 39] 38
37|36 |35 |34 | 33|32] 31] 30
ZF | ZE | 2D | 2C | 2B | 2A [28| 23
29 | 22 | 22 | 21| 40
iF|4E | 90 [1C | 1B | 1A]| 19] 12
17 |46 |95 [14 | 12 |12 | 11] 10
OF [DE |OD | OC | OB | OA | 05 | 02
OF |06 |05 |04 |02 |02 | 01| 0D

R TR T T - - W, S

=1 AR o hed] b e b o] A1
5
£
th

Bank 3
Bank 2
10
o Bank 1
0 an
o7
= Cafaull Registar Bank fof RD = R7

SILICON LABS

Special Function Registers

DATA MEMORY (RAM) -
INTERNAL DATA ADDRESS SPACE SPIOCN PCAOH PCAOCPHO | PCAOCPH1 | PCAOCPH2 | PCAOCPH3 | PCAOCPH4 WDTCN
OafF Uopar 128 RAM Special Funclion FO B SCON1 SBUF1 SADDR1 TL4 TH4 EIP1 EIP2
Irdenae T f LT
L 'Ej:'f‘f'““_'“ 0 qﬁf‘ e Al E8 ADCOCN PCAOL PCAOCPLO | PCAOCPL1 | PCAOCPL2 | PCAOCPL3 | PCAOCPL4 RSTSRC
OxB0 W (D Adressing Unly)
TF EO ACC XBRO XBR1 XBR2 RCAP4L RCAP4H EIE1 EIE2
(Digct and Anslirgct
fdirssng Lowd 128 RAM D8 PCAOCN PCAOMD | PCAOMO | PcAocPM1 | Pcaocpmz | PCAOCPM | PCAOCPM
%30 el It 3 4
by Dwal and Indirgcd
[ndF
i B Addressatia - DO PSW REFOCN DACOL DACOH DACOCN DACIL DAC1H DACICN
OxTF General Purpase c8 T2CON T4CON RCAP2L RCAP2H TL2 TH2 SMBOCR
0x00 Ragistars
Co SMBOST
SMBOCN A SMBODAT SMBOADR ADCOGTL ADCOGTH ADCOLTL ADCOLTH
B8 IP SADENO AMXOCF AMXOSL ADCOCF P1MDIN ADCOL ADCOH
BO P3 OSCXCN OSCICN P740UT FLSCL FLACL
A8 IE SADDRO ADCICN ADCICF AMX1SL P3IF SADEN1 EMIOCN
A0 P2 EMIOTC EMIOCF POMDOUT PIMDOUT P2MDOUT | P3MDOUT
98 SCONO SBUFO SPIOCFG SPIODAT ADC1 SPIOCKR CPTOCN CPT1CN
90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H P7
88 TCON TMOD TLO TL1 THO TH1 CKCON PSCTL
80 PO SP DPL DPH P4 P5 P6 PCON
0(8)
Bit 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

addressable

SILICON LABS

Addressing Modes

¢ Eight modes of addressing are available with the
C8051F020

¢ The different addressing modes determine how the operand
byte Is selected

Addressing Modes Instruction
Register MOV A,B
Direct MOV 30H,A
Indirect ADD A ,@RO
Immediate Constant ADD A,#80H
Relative* SIMP AHEAD
Absolute* AJMP BACK
Long* LIMP FAR_AHEAD
Indexed MOVC A @A+PC

®
* Related to program branching instructions @

SILICON LABS

Register Addressing

¢ The register addressing instruction involves information
transfer between registers

¢ Example:
MOV RO, A

¢ The instruction transfers the accumulator content into the RO
register. The register bank (Bank 0, 1, 2 or 3) must be
specified prior to this instruction.

~>

SILICON LABS

Direct Addressing

¢ This mode allows you to specify the operand by giving its
actual memory address (typically specified in hexadecimal
format) or by giving its abbreviated name (e.g. P3)

Note: Abbreviated SFR names are defined in the “C8051F020.inc” header file

¢ Example:

MOV A, P3 -Transfer the contents of
-Port 3 to the accumulator

MOV A, 020H -Transfer the contents of RAM
-location 20H to the accumulator

~>

SILICON LABS

Indirect Addressing

¢ This mode uses a pointer to hold the effective address of the
operand

¢ Only registers RO, R1 and DPTR can be used as the pointer
registers

¢ The RO and R1 registers can hold an 8-bit address, whereas
DPTR can hold a 16-bit address

¢ Examples:

MOV @RO,A ;Store the content of
;accumulator into the memory
; location pointed to by
;register RO. RO could have an
;8-bit address, such as 60H.

MOVX A,@DPTR :Transfer the contents from
;the memory location

;pointed to by DPTR into the ®
;accumulator. DPTR could have a @
;16-bit address, such as 1234H. SILIEHN-LABS

10

Immediate Constant Addressing

1

1

¢ This mode of addressing uses either an 8- or 16-bit
constant value as the source operand

¢ This constant is specified in the instruction, rather than in
a register or a memory location

¢ The destination register should hold the same data size
which is specified by the source operand

¢ Examples:

ADD A,#030H ;Add 8-bit value of 30H to
;the accumulator register
;(which 1s an 8-bit register).

MOV DPTR,#0FEOOH -Move 16-bit data constant

;FEOOH 1nto the 16-bit Data 0
;Pointer Register. @

SILICON LABS

Relative Addressing

¢

12

This mode of addressing is used with some type of jump
Instructions, like SIJMP (short jJump) and conditional jumps
like INZ

These instructions transfer control from one part of a
program to another

The destination address must be within -128 and +127 bytes
from the current instruction address because an 8-bit offset
IS used (28 = 256)

Example:

GoBack: DEC A ;Decrement A
JNZ GoBack ;1T A 1s not zero, loop back

~>

SILICON LABS

Absolute Addressing

¢ Two Instructions associated with this mode of addressing
are ACALL and AJMP instructions

¢ These are 2-byte instructions where the 11-bit absolute
address is specified as the operand

¢ The upper 5 bits of the 16-bit PC address are not modified.
The lower 11 bits are loaded from this instruction. So, the
branch address must be within the current 2K byte page of
program memory (211 = 2048)

¢ Example:
ACALL PORT _INIT ;PORT_INIT should be
; located within 2k bytes.
PORT _INIT: MOV PO, #OFH

;PORT _INIT subroutine E : | o

SILICON LABS

13

Long Addressing

¢ This mode of addressing is used with the LCALL and LIMP
Instructions

¢ Itis a 3-byte instruction and the last 2 bytes specify a 16-bit
destination location where the program branches

¢ It allows use of the full 64 K code space

¢ The program will always branch to the same location no
matter where the program was previously

¢ Example:

LCALL TIMER_INIT ;TIMER_INIT address (16-bits
;long) 1s specified as the
;operand; In C, this will be a
;function call: Timer_Init().

TIMER INIT: ORL TMOD,#01H :TIMER_INIT subroutine
SILICON LABS

14

Indexed Addressing

¢

15

The Indexed addressing is useful when there is a need to retrieve data
from a look-up table

A 16-bit register (data pointer) holds the base address and the
accumulator holds an 8-bit displacement or index value

The sum of these two registers forms the effective address for a JMP or
MOVC instruction

Example:
MOV A,#08H ,O0ffset from table start
MOV DPTR,#01FO0OH ;Table start address
MOVC A,@A+DPTR ;Gets target value from the table
,start address + offset and puts it
-in A.
After the execution of the above instructions, the program will branch to

address 1F08H (1FOOH+08H) and transfer into the accumulator the data
byte retrieved from that location (from the look-up table) E | .

SILICON LABS

