Basic Data Communications Concepts

OVERVIEW

Bits & Bytes

Characters Codes

Parallel vs. Serial

Timing Methods for Serial Transmission

Directionality of the Transmission Path

FIGURE 3-1: TERMINAL AND HOST

Terminal

COMPUTER

/

Host computer

A SIMPLE DATA COMM. MODEL

« Host Computer - where the processing takes place
— Mainframes
— Minicomputers
— Microcomputers (PCs)
— Super Computers

« Terminal - a device that communicates with a host
— Dumb - Send/Receive data. Can’'t modify data
— Smart - Sends extra info to host (e.g., terminal ID)
— Intelligent - Programmable

« PCs are the most “intelligent” terminal
— Can emulate any of the three listed above.
— Can also act as a host in some situations

BITS & BYTES

With few exceptions, digital computers communicate
through a series of 1's and 0’s known as bits.

This binary representation can also be thought of as being
on and off.

Groups of bits are referred to as bytes
— In most systems, a byte consists of 8 bits
— Usually each byte represents a single character
e A-Z, a-z, 0-9
* punctuation characters(e.g., @, #, %)
» special characters (LF, CR, ESC)

Bits and bytes are closely related to the binary number
system. See Appendix in text for more information

CHARACTER CODES

The relationship of bytes to characters is determined
by a character code

Each time a user presses a key on a terminal/PC, a
binary code is generated for the corresponding
character.

Various character codes have been used in data
communication including:

— Morse, Baudot
— EBCDIC, ASCII
— Unicode

Regardless of the character code, both the terminal/
host or sender/receiver must recognize the same
coding scheme

MORSE CODE

First character code developed

For transmitting data over telegraph wires
— telegrams (remember Western Union)

Used dots (short beep) and dashes (long beeps)
Instead of 1's and 0’s

More frequent the character, the fewer the beeps

Problems:

— variable “length” character representation

— required pauses between letters

— no lower case, few punctuation or special characters
— no error detection mechanism

2 - R —=T QMmO Ow >

FIGURE 3-2: MORSE CODE

o — N —_0 1 @ — — —
— 0 0 0 O —— — 2 ®o 0 — — —
— 0 — 0 P o ——o 3 oo 0o — —
-_—0 0 Q —_—— O = 4 oo 0 0 —
[R e — o 5 oo o000
o0 — o S L I Y 6 — 0 000
—_—— T —_— 7 —_——-— 0 e
eoooe0 U oo — g ==—==—9ce
o0 Vv o0 0 — 0 —_———
* — — — W * — — 0O =—=—=——=
—_— — X — 00 — . *o— 0o — o0 —
oe—ooeo Y —_ — — —_—— 0 — —
—_—— 7 —_——0 0 9 oo ——oo0o

BAUDOT CODE

One of first codes developed for machine to machine
communication

Uses 1's and O’s instead of dots and dashes
For transmitting telex messages (punch tape)

Fixed character length (5-bits)
— 32 different codes
— Increased capacity by using two codes for shifting
e« 11111 (32) Shift to Lower (letters)
e 11011 (27) Shift to Upper (digits, punctuation)
— 4 special codes for SP, CR, LF & blank
— Total =26 + 26 + 4 = 56 different characters

BAUDOT CODE (cont.)

Problems:

— required shift code to switch between character sets

— no lower case, few special characters

— no error detection mechanism

— characters not ordered by binary value

— designed for transmitting data, not for data processing

International Baudot
— Added a 6th bit for parity
— Used to detect errors within a single character

FIGURE 3-3: BAUDOT CODE

Character Data bits

Lower case Upper case 5 4 3 2 1

A o o o 1 1

B ? 1 1 0 0 1

C : 0O 1 1 1 0

D $ 0O 1 0 0 1

E 3 o 0 o0 0 1

F ! 0o 1 1 0 1

G & 1 1 0 1 0

H # 1 0 0 0

I 8 0O o0 1 1 o0

J ' o 1 0 1 1

K (o 1 1 1 1

L) 1 0 0 1 0

M . 1 1 1 0 0

N , 0O 1 1 0 0

o 9 1 1 0 0 O

P 0 1 0 1 1 0

Q 1 1 0 1 1 1

R 4 0O 1 0 1 0

S BELL O o0 1 0 1

T 5 1 0 0 0 0

U 7 0O o0 1 1 1

\' ; 1 1 1 1 0

W 2 1 0 0 1 1

X / 1 1 1 0 1

Y 6 1 0 1 0 1

Z " 1 0 0 0 1

Letters (shift to Lower case column) 1 1 1 1 1
Figures (shift to Upper case column) 1 1 0 1 1
Space O 0 1 0 0
Carriage return O 1 0 0 O
Line feed 0O 0 o0 1 0

Blank

o
<o
]
]
e»]

EBCDIC

« Extended Binary Coded Decimal Interchange Code

 8-bit character code developed by IBM
— used for data communication, processing and storage
— extended earlier proprietary 6-bit BCD code
— designed for backward compatibility or marketing?
— still in use today on some mainframes and legacy systems.

* Allows for 256 different character representations (2%)
— includes upper and lower case
— lots of special characters (non-printable)
— lots of blank (non-used codes)
» assigned to international characters in various versions
— used with/without parity (block transmissions)

FIGURE 3-4: EBCDIC CODE

4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
5 0 0 0 0 1 1 1 1 0 0 0|0 1 1 1 1
Bit 6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0123
0000 |NUL |SOH | STX | ETX | PF |HT| LC |DEL VT | FF CR SO SI
0001 |DLE | DC1 | DC2 | DC3 | RES [NL | BS IL | CAN | EM IFS | IGS | IRS | IUS
0010 FS BYP | LF | EOB | PRE SM ENQ | ACK | BEL
0011 SYN PN [RS | UC | EOT DC4 | NAK SUB
0100]| SP q < (+ |
0101 & ! $ *) H -1
0110 - / L O 7 - > ?
0111 \ #| @ ' = «
1000 a b c d e f g h i
1001 j k 1 m n o p q r
1010 ~ S t u v w X y z
1011
1100 { A B D E F G 1
1101 } J K M N o P R
1110 T U \% w X
1111 0 1 2 3 4 5 6 7 8 9 O

Note: To read this chart, simply find the character on the chart, then look to the left side of the row for bits 0, 1, 2,
and 3, and to the top of the column for bits 4, 5, 6, and 7. This is only one of many possible implementations of EBCDIC.

EBCDIC special characters

ACK
BEL
BS
BYP
CAN
CR
DCI
DC2
DC3
DC4
DEL
DLE
EM
ENQ
EOB

Acknowledgement EOT End of Transmission

Bell ETX End of Text

Backspace FF Form Feed

Bypass FS File Separator

Cancel HT Horizontal Tab

Carriage Return IFS Information File Separator
Device Control 1 IGS Information Group Separator
Device Control 2 IL Idle

Device Control 3 IRS Information Record Separator
Device Control 4 1US Information Unit Separator
Delete LC Lower Case

Data Link Escape LF Line Feed

End of Medium NAK Negative Acknowledgement
Enquiry NL New Line

End of Block NUL Null

PF
PN
PRE
RES
RS
SI
SM
SO
SOH
Sp
STX
SUB
SYN
ucC
VT

Punch Off
Punch On

Prefix

Restore

Reader Stop
Shift In

Start Message
Shift Out

Start of Heading
Space

Start of Text
Substitute
Synchronous Idle
Upper Case
Vertical Tab

ASCIlI CODE

American Standard Code for Information Interchange

7-bit code developed by the American National Standards
Institute (ANSI)

— most popular data communication character code today

Allows for 128 different character representations (27)
— includes upper and lower case
— lots of special characters (non-printable)
— generally used with an added parity bit
— better binary ordering of characters than EBCDIC

Extended ASCII uses 8 data bits and no parity

— Used for processing and storage of data

— Allows for international characters

— 8th bit stripped of for transmission of standard character set

FIGURE 3-5: 7-BIT ASCII CODE

Bits Bits Bits Bits

7654321 Character 7654321 Character 7654321 Character | 7654321 Character
0000000 NUL 0100000 SP 1000000 @ 1100000 N
0000001 SOH 0100001 ! 1000001 A 1100001 a
0000010 STX 0100010 “ 1000010 B 1100010 b
0000011 ETX 0100011 # 1000011 C 1100011 C
0000100 EOT 0100100 $ 1000100 D 1100100 d
0000101 ENQ 0100101 % 1000101 E 1100101 e
0000110 ACK 0100110 & 1000110 F 1100110 f
0000111 BEL 0100111 ' 1000111 G 1100111 g
0001000 BS 0101000 (1001000 H 1101000 h
0001001 HT 0101001) 1001001 I 1101001 i
0001010 LF 0101010 * 1001010 J 1101010 i
0001011 vT 0101011 + 1001011 K 1101011 k
0001100 FF 0101100 . 1001100 L 1101100 1
0001101 CR 0101101 - 1001101 M 1101101 m
0001110 SO 0101110 . 1001110 N 1101110 n
0001111 SI 0101111 / 1001111 O 1101111 o
0010000 DLE 0110000 0 1010000 P 1110000 P
0010001 DC1 0110001 1 1010001 Q 1110001 q
0010010 DC2 0110010 2 1010010 R 1110010 r
0010011 DC3 0110011 3 1010011 S 1110011 S
0010100 DC4 0110100 4 1010100 T 1110100 t
0010101 NAK 0110101 5 1010101 U 1110101 u
0010110 SYN 0110110 6 1010110 \Y% 1110110 v
0010111 ETB 0110111 7 1010111 W 1110111 W
0011000 CAN 0111000 8 1011000 X 1111000 X
0011001 EM 0111001 9 1011001 Y 1111001 vy
0011010 SUB 0111010 : 1011010 Z 1111010 z
0011011 ESC 0111011 ; 1011011 [1111011 {
0011100 FS 0111100 < 1011100 \ 1111100 |
0011101 GS 0111101 = 1011101] 1111101 }
0011110 RS 0111110 > 1011110 ~ 1111110 ~
0011111 us 0111111 ? 1011111 — 1111111 DEL

FIGURE 3-5: ASCII NON-PRINTABLE CODES

ASCII control characters

BEL Bell EM End of Medium
CAN Cancel ESC Escape

DC1 Device Control 1 NUL Null

DC2 Device Control 2 SI Shift In

DC3 Device Control 3 SO Shift Out

DC4 Device Control 4 SUB Substitute

DEL Delete

Control codes

ACK Acknowledge ETX End of Text

DLE Data Link Escape NAK Negative Acknowledge
ENQ Enquiry SOH Start of Heading

EOT End of Transmission STX Start of Text

ETB End of Transmission Block SYN Synchronous Idle

Format effectors

BS Backspace HT Horizontal Tabulation
CR Carriage Return LF Line Feed
FF Form Feed VT Vertical Tabulation

Information separators

FS File Separator RS Record Separator
GS Group Separator US Unit Separator

UNICODE

Designed to support international languages:

Latin; Greek; Cyrillic; Armenian; Hebrew; Arabic; Syriac; Thaana;
Devanagari; Bengali; Gurmukhi; Oriya; Tamil; Telegu; Kannada; Malayalam,
Sinhala; Thai; Lao; Tibetan; Myanmar; Georgian; Hangul; Ethiopic;
Cherokee; Canadian-Aboriginal Syllabics; Ogham; Runic; Khmer;
Mongolian; Han (Japanese, Chinese, Korean ideographs); Hiragana;
Katakana; Bopomofo and Yi

Uses a 16-bit code for total of 65,536 possible char.
— Incorporates ASCII in first 128 codes
— Incorporates LATIN in first 256 codes

Support found in newer hardware & software,
especially web technologies (e.g., JAVA, XML, HTML)

For more see www.unicode.orq

SUMMARY OF CHARACTER CODES

Morse = -

Baudot = 5Dbit (no parity)

Int. Baudot = 6 bit (b data + 1 parity)
ASCII = 8 bit (7 data + 1 parity)
EBCDIC = 9 bit (8 data + 1 parity)
UNICODE = 16 bits (no parity)

Normally terminals and hosts must use the same code

However, code conversion hardware/software can be used
to allow different machines to communicate

SUMMARY OF CHARACTER CODES (cont.)

 Bits per character affect
— storage requirements
— throughput of information

 Use of larger codes became feasible due to
— higher transmission speeds
— denser storage mediums

 Choice of character coding scheme is a trade off between
— simplicity & brevity
— expressivity

TRANSMISSION CHARACTERISTICS

e A character code determines what bits we will send
between a terminal and host

 But how will those bits be sent:
— Parallel vs. Serial Transmission
— Serial Transmission Timing
— Direction of Transmission Path
— Others which we’ll look at later
* speed
» organization of data (protocol)
e transmission media

FIGURE 3-8: PARALLEL DATA
TRANSMISSION

Y

N

Printer

YY Y Y VY VY VY Y

—_ O OO O o~ Oo

/

Host computer

Used most often for communication with local devices

FIGURE 3-9: SERIAL DATA TRANSMISSION

/

Terminal Host computer

Used most often for data communication

SERIAL TRANSMISSION TIMING

« ASYNCHRONOUS

— Bits comprising a character are transmitted independent
of timing of any other character

— Asynchronous information bits are preceded by a start
bit and followed by a stop bit

« Start bit is always a 0 (space)
o Stop bit is always a 1 (mark)

— Start and Stop bits along with a parity bit result in 30%
overhead in data transmission using ASCII codes

— Also known as start-stop transmission

— Used with dumb terminals and “character at a time”
applications

FIGURE 3-10: ASYNCHRONOUS DATA
TRANSMISSION

Variable
time
between
characters

?

'101000010&/1010000010#
= N 1IN\

Stop Parity Data Start Stop Parity Data Start

/

) bit bit bits bit bit bit bits bit
Terminal Host computer

(ASCII letter “B”) (ASCII letter “A”)

SERIAL TRANSMISSION TIMING (cont.)

« SYNCHRONOUS

— Timing between sending and receiving locations is
synchronized for transmission using clocks or sync
characters

— Provides support for block-mode transmission of data
— No start or stop bits

— Parity bits may not be used depending on the character
code and block protocol

— Frequently used with smart/intelligent terminals
o User inputs data which is held in the terminal

» After input is complete, user presses the “send” or “enter”
key and all data is transmitted in a single block.

FIGURE 3-11: SYNCHRONOUS DATA
TRANSMISSION

—— 01T 000010;,01 00000 1]—3up
Data bits Data bits P

(ASCII letter “B”) (ASCII letter “A”) -

Terminal Host computer

FIGURE 3-12: SYNCHRONOUS AND
ASYNCHRONOUS TRANSMISSION EFFICIENCY

Asynchronous transmission efficiency

ABCDEFGHIJKLMNOPQRSTUVWXYZ, etc., ABCDEFGHIJKLMNOPQRSTUVWXYZ
Each character = 8 data bits, 1 start bit, 1 stop bit = 10 total bits

If we need to send 1000 characters,
then 10000 total bits are sent,
of which 8000 are data bits —80% efficiency

If we need to send 40 characters,
then 400 total bits are sent,
of which 320 are data bits — 80%efficiency

If we need to send 20 characters,
then 200 total bits are sent,
of which 160 are data bits —80% efficiency

Synchronous transmission efficiency

ik ABCDEFGHIJKLMNOPQRSTUVWXYZ, etc., ABCDEFGHIJKLMNOPQRSTUVWXY Z##3#%%

Assume that each block of data needs 10 special characters (shown as *)
Each character = 8 data bits

If we need to send 1000 characters,
we add the 10 special characters,
for a total of 1010 characters,
so we send 8080 total bits,
of which 8000 are data bits —99.1% efficiency

If we need to send 40 characters,
we add the 10 special characters,
for a total of 50 characters,
so we send 400 total bits,
of which 320 are data bits —80% efficiency

If we need to send 20 characters,
we add the 10 special characters,
for a total of 30 characters,
so we send 240 total bits,
of which 160 are data bits —06.7% efficiency

FIGURE 3-13: SIMPLEX COMMUNICATIONS

-
-
-
- -
S Pt S
- - -
-~
- -
- - -
- -
-

Terminal

—t

PATH

One way only

/

Host computer

FIGURE 3-14: HALF DUPLEX
COMMUNICATIONS PATH

/‘/“

- First one way...

Terminal Host computer

— ... then the other

Terminal Host computer

|

///“
/

FIGURE 3-15: FULL DUPLEX
COMMUNICATIONS PATH

Both ways at
the same time

/

Host computer

