
Basic Data Communications Concepts

OVERVIEW

• Bits & Bytes

• Characters Codes

• Parallel vs. Serial

• Timing Methods for Serial Transmission

• Directionality of the Transmission Path

FIGURE 3-1: TERMINAL AND HOST
COMPUTER

A SIMPLE DATA COMM. MODEL

• Host Computer - where the processing takes place
– Mainframes
– Minicomputers
– Microcomputers (PCs)
– Super Computers

• Terminal - a device that communicates with a host
– Dumb - Send/Receive data. Can’t modify data
– Smart - Sends extra info to host (e.g., terminal ID)
– Intelligent - Programmable

• PCs are the most “intelligent” terminal
– Can emulate any of the three listed above.
– Can also act as a host in some situations

BITS & BYTES

• With few exceptions, digital computers communicate
through a series of 1’s and 0’s known as bits.

• This binary representation can also be thought of as being
on and off.

• Groups of bits are referred to as bytes
– In most systems, a byte consists of 8 bits
– Usually each byte represents a single character

• A-Z, a-z, 0-9
• punctuation characters(e.g., @, #, %)
• special characters (LF, CR, ESC)

• Bits and bytes are closely related to the binary number
system. See Appendix in text for more information

CHARACTER CODES

• The relationship of bytes to characters is determined
by a character code

• Each time a user presses a key on a terminal/PC, a
binary code is generated for the corresponding
character.

• Various character codes have been used in data
communication including:
– Morse, Baudot
– EBCDIC, ASCII
– Unicode

• Regardless of the character code, both the terminal/
host or sender/receiver must recognize the same
coding scheme

MORSE CODE

• First character code developed

• For transmitting data over telegraph wires
– telegrams (remember Western Union)

• Used dots (short beep) and dashes (long beeps)
instead of 1’s and 0’s

• More frequent the character, the fewer the beeps

• Problems:
– variable “length” character representation
– required pauses between letters
– no lower case, few punctuation or special characters
– no error detection mechanism

FIGURE 3-2: MORSE CODE

BAUDOT CODE

• One of first codes developed for machine to machine
communication

• Uses 1’s and 0’s instead of dots and dashes

• For transmitting telex messages (punch tape)

• Fixed character length (5-bits)
– 32 different codes
– increased capacity by using two codes for shifting

• 11111 (32) Shift to Lower (letters)
• 11011 (27) Shift to Upper (digits, punctuation)

– 4 special codes for SP, CR, LF & blank
– Total = 26 + 26 + 4 = 56 different characters

BAUDOT CODE (cont.)

• Problems:
– required shift code to switch between character sets
– no lower case, few special characters
– no error detection mechanism
– characters not ordered by binary value
– designed for transmitting data, not for data processing

• International Baudot
– Added a 6th bit for parity
– Used to detect errors within a single character

FIGURE 3-3: BAUDOT CODE

EBCDIC

• Extended Binary Coded Decimal Interchange Code

• 8-bit character code developed by IBM
– used for data communication, processing and storage
– extended earlier proprietary 6-bit BCD code
– designed for backward compatibility or marketing?
– still in use today on some mainframes and legacy systems.

• Allows for 256 different character representations (28)
– includes upper and lower case
– lots of special characters (non-printable)
– lots of blank (non-used codes)

• assigned to international characters in various versions
– used with/without parity (block transmissions)

FIGURE 3-4: EBCDIC CODE

ASCII CODE

• American Standard Code for Information Interchange

• 7-bit code developed by the American National Standards
Institute (ANSI)
– most popular data communication character code today

• Allows for 128 different character representations (27)
– includes upper and lower case
– lots of special characters (non-printable)
– generally used with an added parity bit
– better binary ordering of characters than EBCDIC

• Extended ASCII uses 8 data bits and no parity
– Used for processing and storage of data
– Allows for international characters
– 8th bit stripped of for transmission of standard character set

FIGURE 3-5: 7-BIT ASCII CODE

FIGURE 3-5: ASCII NON-PRINTABLE CODES

UNICODE

• Designed to support international languages:
Latin; Greek; Cyrillic; Armenian; Hebrew; Arabic; Syriac; Thaana;
Devanagari; Bengali; Gurmukhi; Oriya; Tamil; Telegu; Kannada; Malayalam;
Sinhala; Thai; Lao; Tibetan; Myanmar; Georgian; Hangul; Ethiopic;
Cherokee; Canadian-Aboriginal Syllabics; Ogham; Runic; Khmer;
Mongolian; Han (Japanese, Chinese, Korean ideographs); Hiragana;
Katakana; Bopomofo and Yi

• Uses a 16-bit code for total of 65,536 possible char.
– Incorporates ASCII in first 128 codes
– Incorporates LATIN in first 256 codes

• Support found in newer hardware & software,
especially web technologies (e.g., JAVA, XML, HTML)

• For more see www.unicode.org

SUMMARY OF CHARACTER CODES

Morse = .-

Baudot = 5 bit (no parity)

Int. Baudot = 6 bit (5 data + 1 parity)

ASCII = 8 bit (7 data + 1 parity)

EBCDIC = 9 bit (8 data + 1 parity)

UNICODE = 16 bits (no parity)

• Normally terminals and hosts must use the same code

• However, code conversion hardware/software can be used
to allow different machines to communicate

SUMMARY OF CHARACTER CODES (cont.)

• Bits per character affect
– storage requirements
– throughput of information

• Use of larger codes became feasible due to
– higher transmission speeds
– denser storage mediums

• Choice of character coding scheme is a trade off between
– simplicity & brevity
– expressivity

TRANSMISSION CHARACTERISTICS

• A character code determines what bits we will send
between a terminal and host

• But how will those bits be sent:
– Parallel vs. Serial Transmission
– Serial Transmission Timing
– Direction of Transmission Path
– Others which we’ll look at later

• speed
• organization of data (protocol)
• transmission media

FIGURE 3-8: PARALLEL DATA
TRANSMISSION

Used most often for communication with local devices

FIGURE 3-9: SERIAL DATA TRANSMISSION

Used most often for data communication

SERIAL TRANSMISSION TIMING

• ASYNCHRONOUS
– Bits comprising a character are transmitted independent

of timing of any other character
– Asynchronous information bits are preceded by a start

bit and followed by a stop bit
• Start bit is always a 0 (space)
• Stop bit is always a 1 (mark)

– Start and Stop bits along with a parity bit result in 30%
overhead in data transmission using ASCII codes

– Also known as start-stop transmission
– Used with dumb terminals and “character at a time”

applications

FIGURE 3-10: ASYNCHRONOUS DATA
TRANSMISSION

SERIAL TRANSMISSION TIMING (cont.)

• SYNCHRONOUS
– Timing between sending and receiving locations is

synchronized for transmission using clocks or sync
characters

– Provides support for block-mode transmission of data
– No start or stop bits
– Parity bits may not be used depending on the character

code and block protocol
– Frequently used with smart/intelligent terminals

• User inputs data which is held in the terminal
• After input is complete, user presses the “send” or “enter”

key and all data is transmitted in a single block.

FIGURE 3-11: SYNCHRONOUS DATA
TRANSMISSION

FIGURE 3-12: SYNCHRONOUS AND
ASYNCHRONOUS TRANSMISSION EFFICIENCY

FIGURE 3-13: SIMPLEX COMMUNICATIONS
PATH

FIGURE 3-14: HALF DUPLEX
COMMUNICATIONS PATH

FIGURE 3-15: FULL DUPLEX
COMMUNICATIONS PATH

