
Advantage of digital communication

- Compatibility
- Flexibility
- Economy available
- Reliability
- Operational speed
- Miniaturization
- Operational and maintenance is simple

- Baud: unit of signaling speed
- represents the speed of the communication channel
- No of code elements per seconds

Elements of digital communication

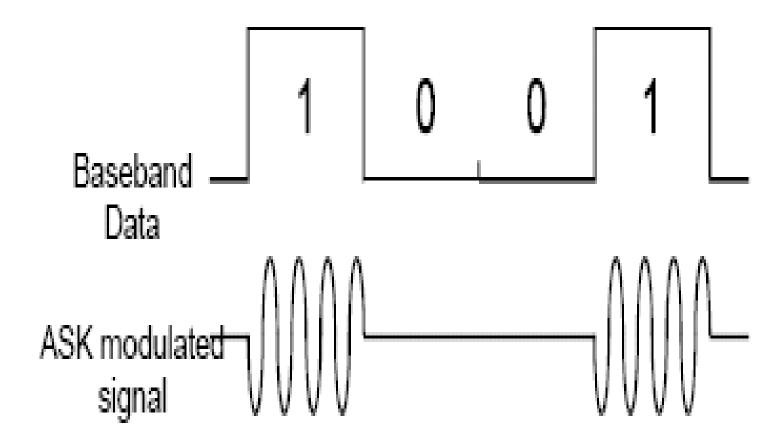
Elements of digital communication system

- simplex
- Half duplex
- Full duplex
- 8000 samples /sec

Digital base band signal

- Digital base band signal are logically transmitted signal (logic ones and zero)
- Two level of voltages or current
- 0 or 1
- Simple to generate, detect and use

- Let mn denotes the message signal produced by the source during the nth interval [nT,(n+1)T]
- sequences of message to be send to the reciever is (m_n)=---m₋₁,m₀,m₁,m₂---
- If source o/p in the nth interval is K,mn=K
- transmitted signal sk(t-nT)
- single wave form V(t)


$$s(t) = \sum_{n=-\infty}^{\infty} Ab_n v(t - nT)$$

bn is represented by message sequence of data variables

Digital modulation technique

- Amplitude shift keying(ASK)
- Phase shift keying
- QPSK
- BPSK

Amplitude Shift Keying (ASK)

$$e = E_c \sin(\omega_c t + \phi)$$

then
 $s(t) = a(t).E_c \sin(\omega_c t + \phi)$

BAND WIDTH OF THIS TYPE OF SYSTEM IS TWICE THE HIGHEST FREQUENCY PRESENT

QUADRATURE ASK

- Two wave form out of phase of 90 degree
- Each of the two component of the signal is an ASK signal with pulse duration Ts

$$s(t) = a_1(t)E_c \sin(\omega_c t + \phi) + a_2(t)E_c \cos(\omega_c t + \phi)$$

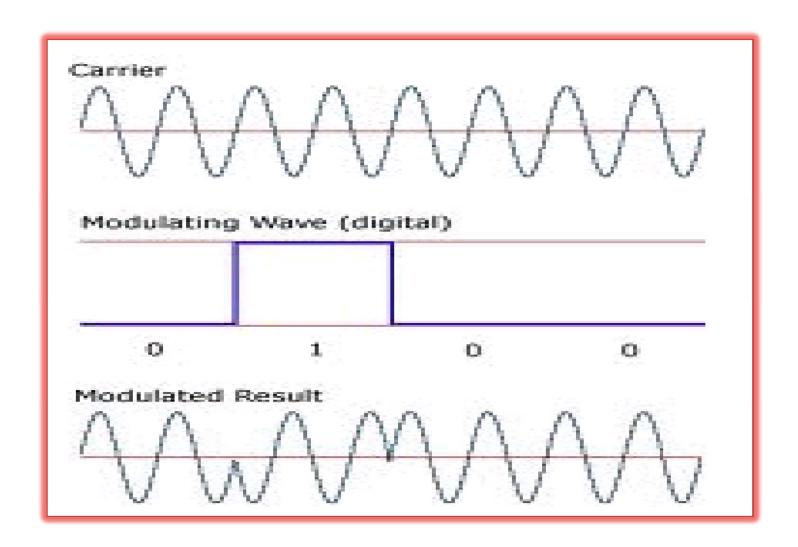
PHASE SHIFT KEYING

180Degree phase shift and zero phase shift

Band width is 2fb

Transmitted wave is a sinusoidal is of amplitude A

Power Ps=1/2 A^2


A=√2Ps

Sbpeak= √2Pscos(wct)

Sbpeak= $\sqrt{2}$ Pscos(wct+ π)=- $\sqrt{2}$ Pscos(wct)

=btcos(wct)

BINARY PHASE SHIFT KEY

System Digital Link Design

- Energy per bit to noise density
- Eb/No is dimensionless
- Figure of merit is bit error rate—bit error probability (BER = SNR)
- Bit error --thermal noise ,external interference, inter-symbolic interference
- In case only thermal noise symbol error rate or symbol error probability is considered

- Energy per symbol /No in measured in the IF bandwidth at the demodulator input
- Higher the value of Es/No, the lower is SER

- Suppose that during one symbol interval Tb
- Transmitter has the power C watt
- If energy received is Eb
- Eb =PtTb
- Where, Tb = 1 / f b
- Eb = Pt / f b(1)
- Fb = symbol rate in symbol / sec
- Noise density No= received power N/IF band width B(at demodulator input)
- No = N / B(2)
- For Equation 1 & 2 -
- C/N = (Eb / No) (fb / B)

- C/N= (Eb/No)(fb/B)
- Eb represents the bit energy & f b represents the bit rate
- Power limited region
- Band limited region
- Es/No --- ideal error bit performance of various digital modulation scheme

Modulation technique	Idea bit error performance
MSK,BPSK/QPSK	P= 1/2erfcv(Eb/No)
DPSK	P=1/2 exp(-Eb/2No)

TDM

- Tp<(Ts/M)- Δ t=1/2Mfm- Δ t
- T1 24 –channel system
- 1+8*24=193
- 193 bits ---125μs