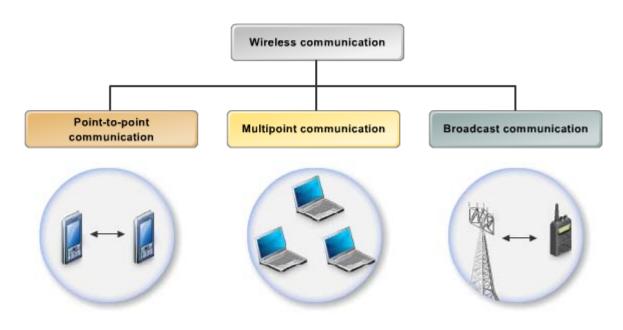
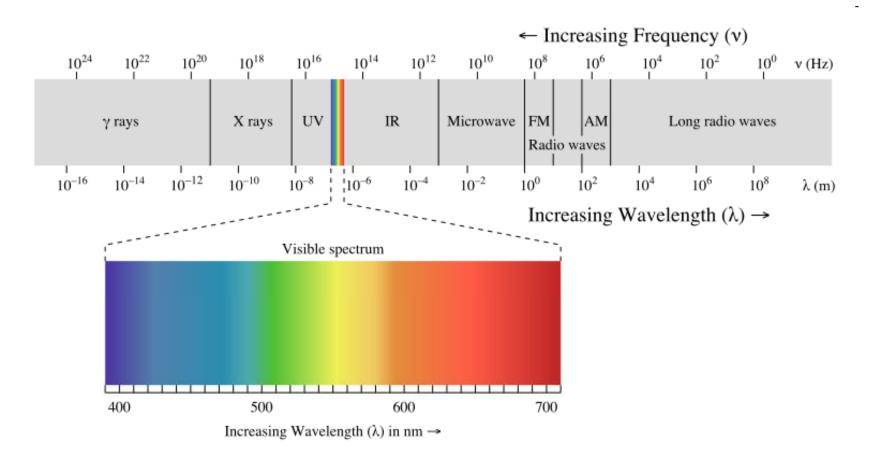

Introduction to Wireless Communication

- Guglielmo Marconi invented the wireless telegraph in 1896
 - Communication by encoding alphanumeric characters in analog signal
 - Sent telegraphic signals across the Atlantic Ocean
- 1914 first voice communication over radio waves
- Communications satellites launched in 1960s
- Advances in wireless technology
 - Radio, television, mobile telephone, communication satellites
- More recently
 - Satellite communications, wireless networking, cellular technology


4

What is Wireless Communication?

- Transmitting voice and data using electromagnetic waves in open space (atmosphere)
- Electromagnetic waves
 - Travel at speed of light ($c = 3x10^8 \text{ m/s}$)
 - Has a frequency (f) and wavelength (λ)
 - $c = f x \lambda$
 - Higher frequency means higher energy photons
 - The higher the energy photon the more penetrating is the radiation


Types of wireless communication

celullar wireless computer network radio service

4

Electromagnetic radiation spectrum

4

Wavelength of Some Technologies

GSM Phones:

- frequency ~= 900 Mhz
- wavelength ~= 33cm

PCS Phones

- frequency ~= 1.8 Ghz
- wavelength ~= 17.5 cm

Bluetooth:

- frequency ~= 2.4Gz
- wavelength ~= 12.5cm

Types of electromagnetic carriers

- when the distance between the sender and receiver is short (e.g. TV box and a remote control) infrared waves are used
- for long range distances between sender and receiver (e.g. TV broadcasting and cellular service) both microwaves and radio waves are used
 - radio waves are ideal when large areas need to be coverd and obstacles exist in the transmission path
 - microwaves are good when large areas need to be coverd and no obstacles exist in the transmission path

Wireless applications (services)

Advantages and disadvantages of wireless communication

advantages:

- mobility
- a wireless communication network is a solution in areas where cables are impossible to install (e.g. hazardous areas, long distances etc.)
- easier to maintain

disadvantages:

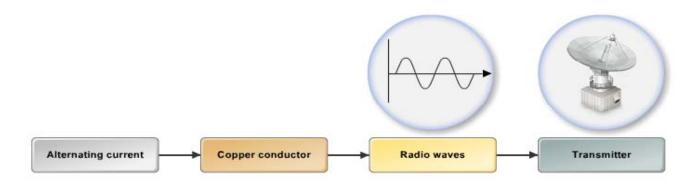
- has security vulnerabilities
- high costs for setting the infrastructure
- unlike wired comm., wireless comm. is influenced by physical obstructions, climatic conditions, interference from other wireless devices

Frequency Carries/Channels

- The information from sender to receiver is carrier over a well defined frequency band.
- This is called a channel
- Each channel has a fixed frequency bandwidth (in KHz) and Capacity (bit-rate)
- Different frequency bands (channels) can be used to transmit information in parallel and independently.

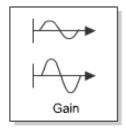
Example

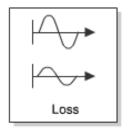
- Assume a spectrum of 90KHz is allocated over a base frequency b for communication between stations A and B
- Assume each channel occupies 30KHz.
- There are 3 channels
- Each channel is simplex (Transmission occurs in one way)
- For full duplex communication:
 - Use two different channels (front and reverse channels)
 - Use time division in a channel

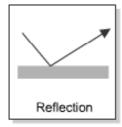

	Channel 1 (b - b+30)	
Station A	Channel 2 (b+30 - b+60)	Station B
	Channel 3 (b+60 - b+90)	

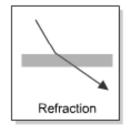
Basics of Radio Communication

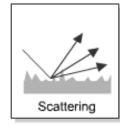
Radio waves generation

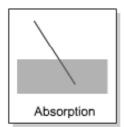

when a high-frequency alternating current (AC) passes through a copper conductor it generates radio waves which are propagated into the air using an antena

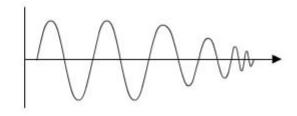



- radio waves have frequencies between:
 - 3 Hz 300 KHz low frequency
 - 300 KHz 30 MHz high frequency
 - 30 MHz 300 MHz very high frequency
 - 300 MHz = 300 GHz = ultra high frequency



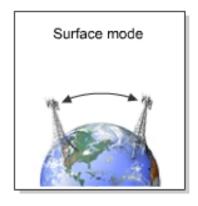

Radio propagation

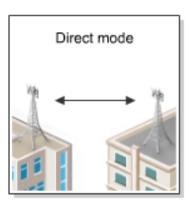


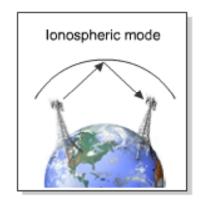


Radio propagation (2)

- radio waves are generated by an antenna and they propagate in all directions as a straight line
- radio waves travel at a velocity of 186.000 miles per second
- radio waves become weaker as they travel a long distance

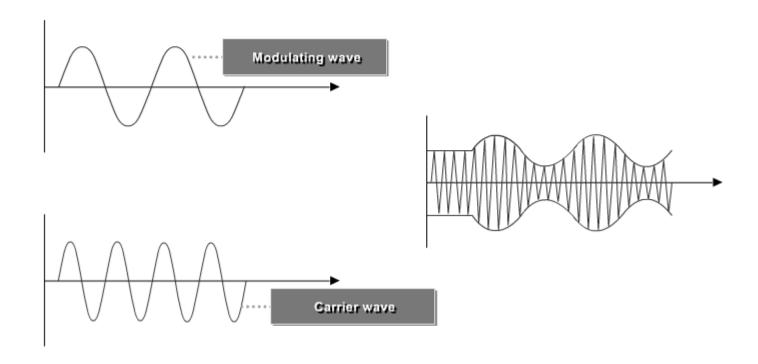


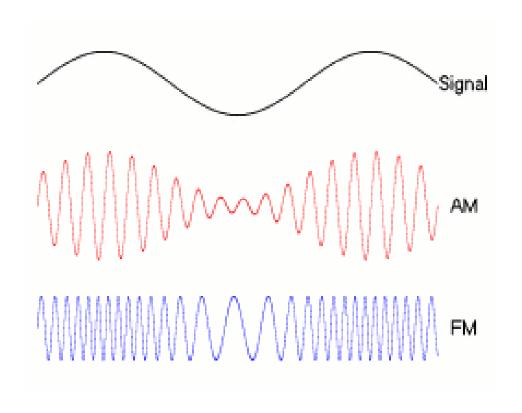




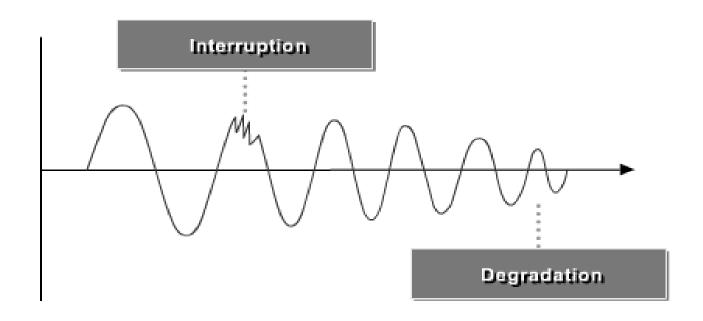
Radio propagation (3)

- there are 3 modes of propagation:
 - surface mode for low frequency waves
 - direct mode for high frequency waves
 - ionospheric mode long distance high frequency waves




Modulation

 modulation = adding information (e.g. voice) to a carrier electromagnetic (radio) signal



Frequency Modulation (FM). Amplitude Modulation (AM)

Radio frequency interference

Radio signal attenuation (path loss)

