
Counter 



Counters 

 Counters are a specific type of 

sequential circuit. 

 Like registers, the state, or the flip-flop 

values themselves, serves as the 

“output.” 

 The output value increases by one on 

each clock cycle. 

 After the largest value, the output 

“wraps around” back to 0. 

 Using two bits, we’d get something like 

this: 
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Benefits of counters 

 Counters can act as simple clocks to keep track of “time.” 

 You may need to record how many times something has happened. 

– How many bits have been sent or received? 

– How many steps have been performed in some computation? 

 All processors contain a program counter, or PC. 

– Programs consist of a list of instructions that are to be executed one 

after another (for the most part). 

– The PC keeps track of the instruction currently being executed. 

– The PC increments once on each clock cycle, and the next program 

instruction is then executed. 

• In digital logic and computing, a counter is a device 

which stores (and sometimes displays) the number of 

times a particular event or process has occurred, often in 

relationship to a clock signal. 
 



Classifications of Counters 

Asynchronous Counters 

 Only the first flip-flop is clocked by an external clock. All 
subsequent flip-flops are clocked by the output of the 
preceding flip-flop.means output of previous flip-flop is 
connected to clock input of next flip flop. 

 Asynchronous counters are slower than synchronous 
counters because of the delay in the transmission of the 
pulses from flip-flop to flip-flop. 

 Asynchronous counters are also called ripple-counters 
because of the way the clock pulse ripples it way through 
the flip-flops. 

 



Synchronous Counters 

 All flip-flops are clocked simultaneously by an external 

clock. Means clock input of all flip flops are connected to 

same external clock. 

 Synchronous counters are faster than asynchronous 

counters because of the simultaneous clocking. 

 Synchronous counters are an example of state machine 

design because they have a set of states and a set of 

transition rules for moving between those states after 

each clocked event. 

 



States / Modulus / Flip-Flops 

 The number of flip-flops determines the count 

limit or number of states.  

(STATES = 2 # of flip flops) 
 

 The number of states used is called the 

MODULUS. 
 

 For example, a Modulus-12 counter would 

count from 0 (0000) to 11 (1011) and requires 

four flip-flops (16 states  - 12 used). 



Electronic counters -- Examples 

 

1. Up/down counter – counts both up and down, under 

command of a control input 

 

2. Ring counter – formed by a shift register with feedback 

connection in a ring 

 

3. Johnson counter – a twisted ring counter 

 

4. Cascaded counter 

 

5. Decade Counter 

 



Asynchronous Counters 

 Asynchronous Counter/Ripple counters 

– can be constructed using several flip flops 

– consider the following arrangement 

– with J = K = 1 each flip flop toggles on the falling edge 

of its clock input 
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 Each stage toggles at half the frequency of the previous stage  

– acts as a frequency divider 

– divides frequency by 2n  (n is the number of stages) 



 Application of a frequency divider 

Clock generator for a digital watch 

– 15-stage counter divides signal from a crystal oscillator 

by 32,768 to produce a 1 Hz signal to drive stepper 

motor or digital display 



 Consider the pattern on the 

outputs of the counter as shown 

– displayed on the right 

 the outputs count in binary from 

0 to 2n-1 and then repeat 
– the circuit acts as a modulo-2n counter 

– since the counting process propagates 

from one bistable to the next this is 

called a ripple counter 

– circuit shown is a 4-bit or modulo-16 

(or mod-16) ripple counter 



 Modulo-N counters 

– by using an appropriate number of stages the earlier 
counter can count modulo any power of 2 

– to count to any other base we add reset circuitry 

– e.g. the modulo-10 or decade counter shown here 

 



 Down and up/down Counters 

– a slight modification to the earlier circuit will produce a 

counter that counts from 2n-1 to 0 and then restarts 

– this is a down counter 

– a further modification can produce an up/down counter 

which counts up or down depending on the state of a 

control line (usually labelled                ) 

 when this is 1 the counter counts up 

 when this is 0 the counter counts down 

downup/



Drawbacks/Limitation of Ripple Counter 

 Propagation delay in counters 

– while ripple counters are very simple they suffer from 

problems at high speed 

– since the output of one flip-flop is triggered by the 

change of the previous device, delays produced by 

each flip-flop are summed along the chain 

– the time for a single device to respond is termed its 

propagation delay time tPD 

– an n-bit counter will take n  tPD to respond 

– if read before this time the result will be garbled 



Asynchronous (Ripple) Counters 
 Example: 2-bit ripple binary counter. 

 Output of one flip-flop is connected to the clock 

input of the next more-significant flip-flop. 
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Asynchronous (Ripple) Counters 
 Example: 3-bit ripple binary counter. 
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Asynchronous (Ripple) Counters 
 Propagation delays in an asynchronous (ripple-

clocked) binary counter. 

 If the accumulated delay is greater than the clock 
pulse, some counter states may be 
misrepresented! 
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Asynchronous (Ripple) Counters 
 Example: 4-bit ripple binary counter (negative-

edge triggered). 
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Asyn. Counters with MOD no. < 2
n 

 States may be skipped resulting in a truncated 

sequence. 

 Technique: force counter to recycle before going 

through all of the states in the binary sequence. 

 Example: Given the following circuit, determine 

the counting sequence (and hence the modulus 

no.) 
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Asyn. Counters with MOD no. < 2
n 

 Example (cont’d): 
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Asyn. Counters with MOD no. < 2
n 

 Example (cont’d): Counting sequence of circuit 
(in CBA order). 
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Asyn. Counters with MOD no. < 2
n 

 Exercise: How to construct an asynchronous 

MOD-5 counter?  MOD-7 counter?  MOD-12 

counter? 

 Question: The following is a MOD-? counter? 
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Asyn. Counters with MOD no. < 2
n 

 Decade counters (or BCD counters) are 
counters with 10 states (modulus-10) in their 
sequence.  They are commonly used in daily 
life (e.g.: utility meters, odometers, etc.). 

 Design an asynchronous decade counter. 
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Asyn. Counters with MOD no. < 2
n 

 Asynchronous decade/BCD counter (cont’d). 
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Asynchronous Down Counters 

 So far we are dealing with up counters.  Down 
counters, on the other hand, count downward 
from a maximum value to zero, and repeat. 

 Example: A 3-bit binary (MOD-2
3
) down 

counter.  
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Asynchronous Down Counters 
 Example: A 3-bit binary (MOD-8) down counter.  
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Cascading Asynchronous Counters 

 Larger asynchronous (ripple) counter can be 
constructed by cascading smaller ripple 
counters. 

 Connect last-stage output of one counter to the 
clock input of next counter so as to achieve 
higher-modulus operation. 

 Example: A modulus-32 ripple counter 
constructed from a modulus-4 counter and a 
modulus-8 counter. 
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Monostables or one-shots 

 Monostables are another form of multivibrator 

– while bistables have two stable output states 

– monostables have one stable & one metastable states 

 when in its stable state Q = 0 

 when an appropriate signal is applied  

to the trigger input (T ) the circuit enters  

its metastable state with Q = 1 

 after a set period of time (determined 

by circuit components) it reverts to its 

stable state 

 it is therefore a pulse generator 
Circuit symbol 



 Monostables can be retriggerable or non-retriggerable 



Astables 

 The last member of the multivibrator family is  

the astable 

– this has two metastable states 

– has the function of a digital oscillator 

– circuit spends a fixed period in each state (determined 

by circuit components) 

– if the period in each state is set to be equal, this will 

produce a square waveform 
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Timers 

 The integrated circuit timer can produce a range of 

functions 

– including those of a monostable or astable 

– various devices 

– one of the most popular is the 555 timer 

– can be configured using just a couple of external 

passive components 

– internal construction largely unimportant – all required 

information on using the device is in its data sheet 



Key Points 

 Sequential logic circuits have the characteristic of memory 

 Among the most important groups of sequential 

components are the various forms of multivibrator 

– bistables 

– monostables 

– astables 

 The most widely used form is the bistable which includes 

– latches, edge-triggered flip-flops and master/slave devices 

 Registers form the basis of various memories 

 Counters are widely used in a range of applications 

 Monostables and astables perform a range of functions 



 BCD 

 In computing and electronic systems, binary-coded decimal (BCD) 

(sometimes called natural binary-coded decimal, NBCD) or, in its most 

common modern implementation, packed decimal, is an encoding for 

decimal numbers in which each digit is represented by its own binary 

sequence. Its main virtue is that it allows easy conversion to decimal digits 

for printing or display, and allows faster decimal calculations. Its 

drawbacks are a small increase in the complexity of circuits needed to 

implement mathematical operations. Uncompressed BCD is also a 

relatively inefficient encoding—it occupies more space than a purely 

binary representation. 

 In BCD, a digit is usually represented by four bits which, in general, 

represent the decimal digits 0 through 9. Other bit combinations are 

sometimes used for a sign or for other indications (e.g., error or overflow). 

 Although uncompressed BCD is not as widely used as it once was, decimal 

fixed-point and floating-point are still important and continue to be used in 

financial, commercial, and industrial computing. 

 



BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001  

• Basics for BCD 

• To encode a decimal number using the common BCD 

encoding, each decimal digit is stored in a 4-bit nibble: 

• Decimal: 0     1      2     3      4      5     6     7      8      9  

 

• Thus, the BCD encoding for the number 127 would be: 

   0001 0010 0111  

• Whereas the pure binary number would be: 

   0111 1111  



Binary-coded-decimal(BCD) counters 



• Consists of two modulo-10 counters, one for each BCD 

digit. 

• It is necessary to reset the four flip-flops after the count 

of 9 has been obtained. Thus the Load input to each stage 

is equal to 1 when Q3=Q0=1, which causes 0s to be 

loaded into the flip-flops at the next positive edge of the 

clock signal. 

• Keeping the Enable signal for BCD1 low at all times 

except when BCD0 = 9 



 IBM and BCD 

• IBM used the terms binary-coded decimal and BCD for 6-bit 

alphamerics codes that represented numbers, upper-case letters and 

special characters. Some variation of BCD alphamerics was used in 

most early IBM computers, including the IBM 1620, IBM 1400 

series, and non-Decimal Architecture members of the IBM 

700/7000 series. 

• Today, BCD data is still heavily used in IBM processors and 

databases, such as IBM DB2, mainframes, and Power6. In these 

products, the BCD is usually zoned BCD (as in EBCDIC or ASCII), 

Packed BCD (two decimal digits per byte), or "pure" BCD encoding 

(one decimal digit stored as BCD in the low four bits of each byte). 

All of these are used within hardware registers and processing units, 

and in software. 


