
Counter

Counters

 Counters are a specific type of

sequential circuit.

 Like registers, the state, or the flip-flop

values themselves, serves as the

“output.”

 The output value increases by one on

each clock cycle.

 After the largest value, the output

“wraps around” back to 0.

 Using two bits, we’d get something like

this:

Present State Next State

A B A B

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

00 01

10 11

1

1 1

1

11

Benefits of counters

 Counters can act as simple clocks to keep track of “time.”

 You may need to record how many times something has happened.

– How many bits have been sent or received?

– How many steps have been performed in some computation?

 All processors contain a program counter, or PC.

– Programs consist of a list of instructions that are to be executed one

after another (for the most part).

– The PC keeps track of the instruction currently being executed.

– The PC increments once on each clock cycle, and the next program

instruction is then executed.

• In digital logic and computing, a counter is a device

which stores (and sometimes displays) the number of

times a particular event or process has occurred, often in

relationship to a clock signal.

Classifications of Counters

Asynchronous Counters

 Only the first flip-flop is clocked by an external clock. All
subsequent flip-flops are clocked by the output of the
preceding flip-flop.means output of previous flip-flop is
connected to clock input of next flip flop.

 Asynchronous counters are slower than synchronous
counters because of the delay in the transmission of the
pulses from flip-flop to flip-flop.

 Asynchronous counters are also called ripple-counters
because of the way the clock pulse ripples it way through
the flip-flops.

Synchronous Counters

 All flip-flops are clocked simultaneously by an external

clock. Means clock input of all flip flops are connected to

same external clock.

 Synchronous counters are faster than asynchronous

counters because of the simultaneous clocking.

 Synchronous counters are an example of state machine

design because they have a set of states and a set of

transition rules for moving between those states after

each clocked event.

States / Modulus / Flip-Flops

 The number of flip-flops determines the count

limit or number of states.

(STATES = 2 # of flip flops)

 The number of states used is called the

MODULUS.

 For example, a Modulus-12 counter would

count from 0 (0000) to 11 (1011) and requires

four flip-flops (16 states - 12 used).

Electronic counters -- Examples

1. Up/down counter – counts both up and down, under

command of a control input

2. Ring counter – formed by a shift register with feedback

connection in a ring

3. Johnson counter – a twisted ring counter

4. Cascaded counter

5. Decade Counter

Asynchronous Counters

 Asynchronous Counter/Ripple counters

– can be constructed using several flip flops

– consider the following arrangement

– with J = K = 1 each flip flop toggles on the falling edge

of its clock input

10.5

 Each stage toggles at half the frequency of the previous stage

– acts as a frequency divider

– divides frequency by 2n (n is the number of stages)

 Application of a frequency divider

Clock generator for a digital watch

– 15-stage counter divides signal from a crystal oscillator

by 32,768 to produce a 1 Hz signal to drive stepper

motor or digital display

 Consider the pattern on the

outputs of the counter as shown

– displayed on the right

 the outputs count in binary from

0 to 2n-1 and then repeat
– the circuit acts as a modulo-2n counter

– since the counting process propagates

from one bistable to the next this is

called a ripple counter

– circuit shown is a 4-bit or modulo-16

(or mod-16) ripple counter

 Modulo-N counters

– by using an appropriate number of stages the earlier
counter can count modulo any power of 2

– to count to any other base we add reset circuitry

– e.g. the modulo-10 or decade counter shown here

 Down and up/down Counters

– a slight modification to the earlier circuit will produce a

counter that counts from 2n-1 to 0 and then restarts

– this is a down counter

– a further modification can produce an up/down counter

which counts up or down depending on the state of a

control line (usually labelled)

 when this is 1 the counter counts up

 when this is 0 the counter counts down

downup/

Drawbacks/Limitation of Ripple Counter

 Propagation delay in counters

– while ripple counters are very simple they suffer from

problems at high speed

– since the output of one flip-flop is triggered by the

change of the previous device, delays produced by

each flip-flop are summed along the chain

– the time for a single device to respond is termed its

propagation delay time tPD

– an n-bit counter will take n  tPD to respond

– if read before this time the result will be garbled

Asynchronous (Ripple) Counters
 Example: 2-bit ripple binary counter.

 Output of one flip-flop is connected to the clock

input of the next more-significant flip-flop.

K

J

K

J

HIGH

Q0 Q1

Q0

FF1 FF0

CLK C C

Timing diagram

00  01  10  11  00 ...

4 3 2 1 CLK

Q0

Q0

Q1

1 1

1 1

0

0 0

0 0

0

Asynchronous (Ripple) Counters
 Example: 3-bit ripple binary counter.

K

J

K

J Q0 Q1

Q0

FF1 FF0

C C

K

J

Q1
C

FF2

Q2

CLK

HIGH

4 3 2 1 CLK

Q0

Q1

1 1

1 1

0

0 0

0 0

0

8 7 6 5

1 1 0 0

1 1 0 0

Q2 0 0 0 0 1 1 1 1 0

Recycles back to 0

Asynchronous (Ripple) Counters
 Propagation delays in an asynchronous (ripple-

clocked) binary counter.

 If the accumulated delay is greater than the clock
pulse, some counter states may be
misrepresented!

4 3 2 1 CLK

Q0

Q1

Q2

tPLH

(CLK to Q0)

tPHL (CLK to Q0)

tPLH (Q0 to Q1)

tPHL (CLK to Q0)

tPHL (Q0 to Q1)

tPLH (Q1 to Q2)

Asynchronous (Ripple) Counters
 Example: 4-bit ripple binary counter (negative-

edge triggered).

K

J

K

J
Q1 Q0

FF1 FF0

C C

K

J

C

FF2

Q2

CLK

HIGH

K

J

C

FF3

Q3

CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q0

Q1

Q2

Q3

Asyn. Counters with MOD no. < 2
n

 States may be skipped resulting in a truncated

sequence.

 Technique: force counter to recycle before going

through all of the states in the binary sequence.

 Example: Given the following circuit, determine

the counting sequence (and hence the modulus

no.)

K

J Q

Q

CLK

CLR
K

J Q

Q

CLK

CLR
K

J Q

Q

CLK

CLR

C B A

B

C

All J, K

inputs are

1 (HIGH).

Asyn. Counters with MOD no. < 2
n

 Example (cont’d):

K

J Q

Q

CLK

CLR
K

J Q

Q

CLK

CLR
K

J Q

Q

CLK

CLR

C B A

B

C

All J, K

inputs are

1 (HIGH).

A

B

1 2

C

NAND

Output

1
0

3 4 5 6 7 8 9 10 11 12

Clock
MOD-6 counter

produced by clearing

(a MOD-8 binary

counter) when count

of six (110) occurs.

Asyn. Counters with MOD no. < 2
n

 Example (cont’d): Counting sequence of circuit
(in CBA order).

A

B

C
NAND

Output
1
0

1 2 3 4 5 6 7 8 9 10 11 12

Clock

11

1
00

0
00

1 11

0
10

1 10

0

01

0
01

1

Temporary

state
Counter is a MOD-6

counter.

0

0

0

1

0

0

0

1

0

1

1

0

0

0

1

1

0

1

0

0

0

1

0

0

CS1104-13 Asynchronous

Counters with

22

Asyn. Counters with MOD no. < 2
n

 Exercise: How to construct an asynchronous

MOD-5 counter? MOD-7 counter? MOD-12

counter?

 Question: The following is a MOD-? counter?

K

J Q

Q
CLR

C B A

C
D
E

F

All J = K = 1.

K

J Q

Q
CLR

K

J Q

Q
CLR

K

J Q

Q
CLR

K

J Q

Q
CLR

K

J Q

Q
CLR

D E F

CS1104-13 Asynchronous

Counters with

23

Asyn. Counters with MOD no. < 2
n

 Decade counters (or BCD counters) are
counters with 10 states (modulus-10) in their
sequence. They are commonly used in daily
life (e.g.: utility meters, odometers, etc.).

 Design an asynchronous decade counter.

D

CLK

HIGH

K

J

C

CLR

Q

K

J

C

CLR

Q
C

K

J

C

CLR

Q
B

K

J

C

CLR

Q
A

(A.C)'

Asyn. Counters with MOD no. < 2
n

 Asynchronous decade/BCD counter (cont’d).

D

C

1 2

B

NAND
output

3 4 5 6 7 8 9 10

Clock
11

A

D

CLK

HIGH

K

J

C

CLR

Q

K

J

C

CLR

Q
C

K

J

C

CLR

Q
B

K

J

C

CLR

Q
A (A.C)'

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1

1

0

0

1

0

0

0

0

Asynchronous Down Counters

 So far we are dealing with up counters. Down
counters, on the other hand, count downward
from a maximum value to zero, and repeat.

 Example: A 3-bit binary (MOD-2
3
) down

counter.

K

J

K

J Q1 Q0

C C

K

J

C

Q2

CLK

1

Q

Q'

Q

Q'

Q

Q'

Q

Q'

3-bit binary

up counter

3-bit binary

down counter

1

K

J

K

J Q1 Q0

C C

K

J

C

Q2

CLK

Q

Q'

Q

Q'

Q

Q'

Q

Q'

Asynchronous Down Counters
 Example: A 3-bit binary (MOD-8) down counter.

4 3 2 1 CLK

Q0

Q1

1 1

1 0

0

0 1

0 0

0

8 7 6 5

1 1 0 0

1 0 1 0

Q2 1 1 0 1 1 0 0 0 0

00

1

00

0
11

1
01

0
01

1 10

0

11

0
10

1

1

K

J

K

J Q1 Q0

C C

K

J

C

Q2

CLK

Q

Q'

Q

Q'

Q

Q'

Q

Q'

Cascading Asynchronous Counters

 Larger asynchronous (ripple) counter can be
constructed by cascading smaller ripple
counters.

 Connect last-stage output of one counter to the
clock input of next counter so as to achieve
higher-modulus operation.

 Example: A modulus-32 ripple counter
constructed from a modulus-4 counter and a
modulus-8 counter.

K

J

K

J

Q1 Q0

C C CLK

Q

Q'

Q

Q'

Q

Q'
K

J

K

J

Q3 Q2

C C

K

J

C

Q4

Q

Q'

Q

Q'

Q

Q'

Q

Q'

Modulus-4 counter Modulus-8 counter

Monostables or one-shots

 Monostables are another form of multivibrator

– while bistables have two stable output states

– monostables have one stable & one metastable states

 when in its stable state Q = 0

 when an appropriate signal is applied

to the trigger input (T) the circuit enters

its metastable state with Q = 1

 after a set period of time (determined

by circuit components) it reverts to its

stable state

 it is therefore a pulse generator
Circuit symbol

 Monostables can be retriggerable or non-retriggerable

Astables

 The last member of the multivibrator family is

the astable

– this has two metastable states

– has the function of a digital oscillator

– circuit spends a fixed period in each state (determined

by circuit components)

– if the period in each state is set to be equal, this will

produce a square waveform

10.7

Timers

 The integrated circuit timer can produce a range of

functions

– including those of a monostable or astable

– various devices

– one of the most popular is the 555 timer

– can be configured using just a couple of external

passive components

– internal construction largely unimportant – all required

information on using the device is in its data sheet

Key Points

 Sequential logic circuits have the characteristic of memory

 Among the most important groups of sequential

components are the various forms of multivibrator

– bistables

– monostables

– astables

 The most widely used form is the bistable which includes

– latches, edge-triggered flip-flops and master/slave devices

 Registers form the basis of various memories

 Counters are widely used in a range of applications

 Monostables and astables perform a range of functions

 BCD

 In computing and electronic systems, binary-coded decimal (BCD)

(sometimes called natural binary-coded decimal, NBCD) or, in its most

common modern implementation, packed decimal, is an encoding for

decimal numbers in which each digit is represented by its own binary

sequence. Its main virtue is that it allows easy conversion to decimal digits

for printing or display, and allows faster decimal calculations. Its

drawbacks are a small increase in the complexity of circuits needed to

implement mathematical operations. Uncompressed BCD is also a

relatively inefficient encoding—it occupies more space than a purely

binary representation.

 In BCD, a digit is usually represented by four bits which, in general,

represent the decimal digits 0 through 9. Other bit combinations are

sometimes used for a sign or for other indications (e.g., error or overflow).

 Although uncompressed BCD is not as widely used as it once was, decimal

fixed-point and floating-point are still important and continue to be used in

financial, commercial, and industrial computing.

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

• Basics for BCD

• To encode a decimal number using the common BCD

encoding, each decimal digit is stored in a 4-bit nibble:

• Decimal: 0 1 2 3 4 5 6 7 8 9

• Thus, the BCD encoding for the number 127 would be:

 0001 0010 0111

• Whereas the pure binary number would be:

 0111 1111

Binary-coded-decimal(BCD) counters

• Consists of two modulo-10 counters, one for each BCD

digit.

• It is necessary to reset the four flip-flops after the count

of 9 has been obtained. Thus the Load input to each stage

is equal to 1 when Q3=Q0=1, which causes 0s to be

loaded into the flip-flops at the next positive edge of the

clock signal.

• Keeping the Enable signal for BCD1 low at all times

except when BCD0 = 9

 IBM and BCD

• IBM used the terms binary-coded decimal and BCD for 6-bit

alphamerics codes that represented numbers, upper-case letters and

special characters. Some variation of BCD alphamerics was used in

most early IBM computers, including the IBM 1620, IBM 1400

series, and non-Decimal Architecture members of the IBM

700/7000 series.

• Today, BCD data is still heavily used in IBM processors and

databases, such as IBM DB2, mainframes, and Power6. In these

products, the BCD is usually zoned BCD (as in EBCDIC or ASCII),

Packed BCD (two decimal digits per byte), or "pure" BCD encoding

(one decimal digit stored as BCD in the low four bits of each byte).

All of these are used within hardware registers and processing units,

and in software.

