Lecture 10 Standard Forms #### SOP AND POS - Boolean expressions can be manipulated into many forms. - Some standardized forms are required for Boolean expressions to simplify communication of the expressions. - Sum-of-products (SOP) - Example: $$F(A, B, C, D) = AB + \overline{B}C\overline{D} + AD$$ - Products-of-sums (POS) - Example: $$F(A, B, C, D) = (A + B)(\overline{B} + C + \overline{D})(A + D)$$ # **Minterms and Maxterms** ### **Minterms and Maxterms** > MINTERMS AND MAXTERMS: n binary variables can be combined to form 2^n terms (AND terms), called *minterms* or standard products. In a similar fashion, n binary variables can be combined to form 2^n terms (OR terms), called *maxterms* or standard sums. ^{*} Note that each maxterm is the complement of its corresponding minterm and vice versa. # Minterms and Maxterms (continued) Minterms and Maxterms for Three Binary Variables | x y z | | Minterms | | Maxterms | |-------|--------|-------------|----------|-----------------| | 0 0 0 | x'y'z' | $m_{\rm o}$ | x+y+z | M _o | | 0 0 1 | x'y'z | m_1 | x+y+z' | M_1 | | 0 1 0 | x'yz' | m_2 | x+y'+z | M_2 | | 0 1 1 | x'yz | m_3 | x+y'+z' | M_3 | | 1 0 0 | xy'z' | m_4 | x'+y+z | \mathcal{M}_4 | | 1 0 1 | xy'z | m_5 | x'+y+z' | M_5 | | 1 1 0 | xyz' | m_6 | x'+y'+z | M_6 | | 1 1 1 | xyz | m_7 | x'+y'+z' | M_7 | #### MINTERMS The following table gives the minterms for a three-input system | | | | m_0 | m_1 | m_2 | m_3 | m_4 | m_5 | m_6 | m_7 | |---|---|---|-------|-------|-------|-------|-------|-------|-------|-------| | Α | В | С | ABC | ĀBC | ĀBĈ | ĀВС | ABC | ABC | ABC | ABC | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | #### SUM OF MINTERMS - Sum-of-minterms standard form expresses the Boolean or switching expression in the form of a sum of products using minterms. - For instance, the following Boolean expression using minterms $$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C$$ could instead be expressed as $$F(A, B, C) = m_0 + m_1 + m_4 + m_5$$ or more compactly $$F(A, B, C) = \sum m(0, 1, 4, 5) = one-set(0, 1, 4, 5)$$ #### MAXTERMS The following table gives the maxterms for a three-input system | | | | M_0 | M_1 | M_2 | <u> M</u> | M_2 | ı Me | ₅ M ₆ | M_7 | |---|---|---|---------------------|---------------------------|------------------------------------|------------|--------------------------------------|--------------------------------------|---|--| | | | | A + B | + C | $\mathbf{A}+\overline{\mathbf{B}}$ | + C | $\overline{\mathbf{A}} + \mathbf{B}$ | + C | $\overline{\mathbf{A}} + \overline{\mathbf{B}}$ | + C | | Α | В | С | | $\mathbf{A} + \mathbf{B}$ | + C | A + B | + C | $\overline{\mathbf{A}} + \mathbf{B}$ | + C | $\overline{A} + \overline{B} + \overline{C}$ | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | #### PRODUCT OF MAXTERMS - Product-of-maxterms standard form expresses the Boolean or switching expression in the form of product of sums using maxterms. - For instance, the following Boolean expression using maxterms $$F(A, B, C) = (A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + \overline{C})$$ could instead be expressed as $$\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = M_1 \cdot M_4 \cdot M_7$$ or more compactly as $$F(A, B, C) = \prod M(1, 4, 7) = zero-set(1, 4, 7)$$ # STANDARD FORMS MINTERM AND MAXTERM EXP. Given an arbitrary Boolean function, such as $$F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C})$$ how do we form the canonical form for: - sum-of-minterms - Expand the Boolean function into a sum of products. Then take each term with a missing variable X and AND it with X + X. - product-of-maxterms - Expand the Boolean function into a product of sums. Then take each factor with a missing variable X and OR it with XX. #### FORMING SUM OF MINTERMS Example $$F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C}) = AB + \overline{AB} + \overline{BC}$$ $$= AB(C + \overline{C}) + \overline{AB}(C + \overline{C}) + (A + \overline{A})\overline{BC}$$ $$= \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$ $$= \sum m(0, 1, 4, 6, 7)$$ | Α | В | С | F | |---|---|---|------------------| | 0 | 0 | 0 | 1 | | 0 | 0 | 1 | 1 ← 1 | | 0 | 1 | 0 | 0 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 1 ← 4 | | 1 | 0 | 1 | 0 | | 1 | 1 | 0 | 1 ◄ 6 | | 1 | 1 | 1 | 1 ← ── 7 | Minterms listed as 1s in Truth Table #### FORMING PROD OF MAXTERMS #### Example $$F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C}) = AB + \overline{AB} + \overline{BC}$$ $$= (A + \overline{B})(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C}) \qquad \text{(using distributivity)}$$ $$= (A + \overline{B} + C\overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$ $$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$ $$= \prod M(2, 3, 5)$$ $= \prod M(2, 3, 5)$ | В | С | F | |---|-----------------------|--| | 0 | 0 | 1 | | 0 | 1 | 1 | | 1 | 0 | 0 ← 2 | | 1 | 1 | 0 ← 3 | | 0 | 0 | 1 | | 0 | 1 | 0 ◄ ── 5 | | 1 | 0 | 1 | | 1 | 1 | 1 | | | 0
0
1
1
0 | 0 0
0 1
1 0
1 1
0 0
0 1 | Maxterms listed as 0s in Truth Table #### CONVERTING MIN AND MAX - Converting between sum-of-minterms and product-of-maxterms - The two are complementary, as seen by the truth tables. - To convert interchange the \sum and \prod , then use missing terms. - Example: The example from the previous slides $$F(A, B, C) = \sum m(0, 1, 4, 6, 7)$$ is re-expressed as $$F(A, B, C) = \prod M(2, 3, 5)$$ where the numbers 2, 3, and 5 were missing from the minterm representation. # Σ minterms and Π maxterms • Given the truth table, express F_1 in sum of minterms | X | У | Z | F_1 | F_2 | |---|---|---|-------|-------| | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 1 | 1 1 | 0 | | 0 | 1 | 0 | | 1 | | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 1 1 | 0 | | 1 | 1 | 0 | 1 1 | 0 | | 1 | 1 | 1 | 1 | 0 | | - | | | | | $$F_1(x, y, z) = \sum (1,4,5,6,7) = m_1 + m_4 + m_5 + m_6 + m_7$$ $$= (x'y'z) + (xy'z') + (xy'z') + (xyz') + (xyz') + (xyz')$$ ■ Find *F*₂ # Σ minterms and Π maxterms Repeat for product of maxterms. | X | У | Z | F_1 | F_2 | |---|---|---|------------------|-------| | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 1 | 1 | 0 | | 0 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 1 | 0 | | 1 | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 0 | | | | | | | $$F_1(x, y, z) = \prod (0,2,3) = M_0 \cdot M_2 \cdot M_3$$ $$= (x + y + z)(x + y' + z)(x + y' + z')$$ # Σ minterms and Π maxterms Express the Boolean function F=x+y'z in a sum of minterms, and then in a product of Maxterms. $$x = x(y + y') = xy + xy'$$ $xy = xy(z + z') = xyz + xyz'$ $xy' = xy'(z + z') = xy'z + xy'z'$ $y'z = y'z(x + x') = xy'z + x'y'z$ Adding all terms and excluding recurring terms: $$F(x, y, z) = x'y'z + xy'z' + xy'z + xyz' + xyz$$ (SOP) $F(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1,4,5,6,7)$ Product of maxterms (POS)? # **SOP and POS gate implementation** #### **SUM OF PRODUCT (SOP)** (a) $$F = B'D' + B'C' + A'C'D$$ #### **PRODUCT OF SUM (POS)** (b) $$F = (A' + B') (C' + D') (B' + D)$$ Fig. 3-15 Gate Implementation of the Function of Example 3-8