Lecture 24

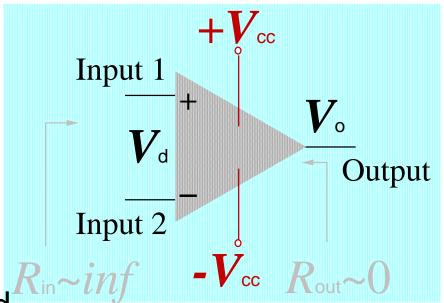
Op-Amp

Op-Amp

- Introduction of Operation Amplifier (Op-Amp)
- Analysis of ideal Op-Amp applications
- Comparison of ideal and non-ideal Op-Amp
- Non-ideal Op-Amp consideration

Operational Amplifier (Op-Amp)

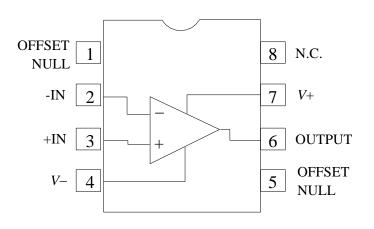
- Very high differential gain
- High input impedance
- Low output impedance
- Provide voltage changes (amplitude and polarity)
- Used in oscillator, filter and instrumentation
- Accumulate a very high gain by multiple stages

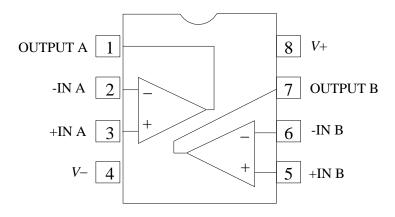


$$V_o = G_d V_d$$

 G_d : differential gain normally very large, say 10^5

IC Product

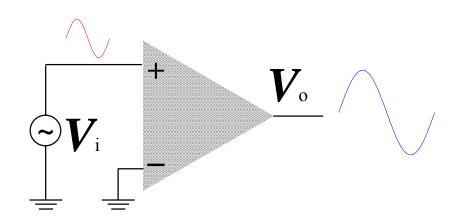




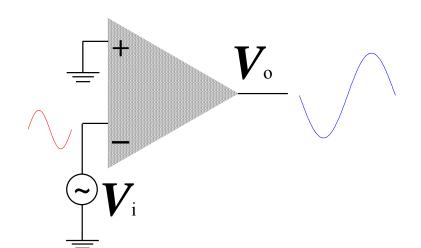
DIP-741

Dual op-amp 1458 device

Single-Ended Input

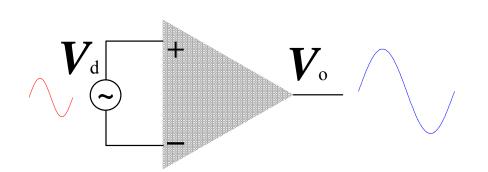


- + terminal : Source
- - terminal : Ground
- 0° phase change

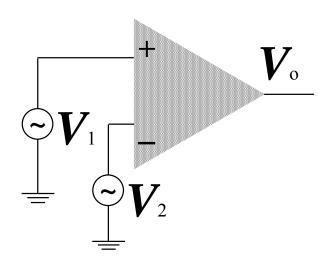


- + terminal : Ground
- – terminal : Source
- 180° phase change

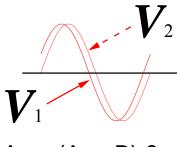
Double-Ended Input



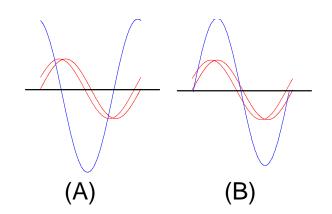
- Differential input
- $_{0}V_{\text{phase}} = V_{\text{hift}} V_{\text{hange}}$ between V_{o} and V_{d}



Qu: What V_0 should be if,

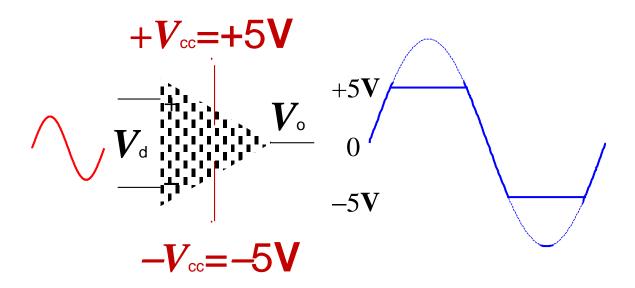


Ans: (A or B)?



6

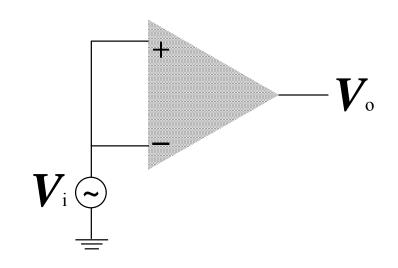
Distortion



The output voltage never excess the DC voltage supply of the Op-Amp

Common-Mode Operation

- Same voltage source is applied at both terminals
- Ideally, two input are equally amplified
- Output voltage is ideally zero due to differential voltage is zero
- Practically, a small output signal can still be measured



Note for differential circuits:

Opposite inputs : highly

amplified

Common inputs: slightly

<u>amplified</u>

⇒ Common-Mode Rejection

Common-Mode Rejection Ratio (CMRR)

Differential voltage input:

$$V_d = V_+ - V_-$$

Common voltage input:

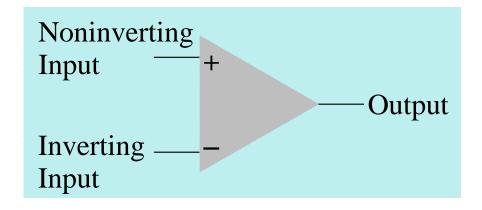
$$V_c = \frac{1}{2}(V_+ + V_-)$$

Output voltage:

$$V_o = G_d V_d + G_c V_c$$

G_d: Differential gain

G_c: Common mode gain



Common-mode rejection ratio:

$$CMRR = \frac{G_d}{G_c} = 20 \log_{10} \frac{G_d}{G_c} (dB)$$

9

Note:

When
$$G_d >> G_c$$
 or CMRR $\to \infty$
 $\Rightarrow V_0 = G_d V_d$

CMRR Example

What is the CMRR?

$$100\mathbf{V} - \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1} - 60700\mathbf{V}$$

$$40\mathbf{V} - \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1}$$

Solution:

$$V_{d1} = 100 - 20 = 80 \mathbf{V}$$

$$V_{c1} = \frac{100 + 20}{2} = 60 \mathbf{V}$$

$$V_{c2} = \frac{100 + 40}{2} = 70 \mathbf{V}$$

$$V_{c2} = \frac{100 + 40}{2} = 70 \mathbf{V}$$
(2)
From (1)
$$V_{o} = 80G_{d} + 60G_{c} = 80600 \mathbf{V}$$

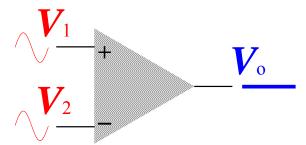
From (2)
$$V_o = 60G_d + 70G_c = 60700V$$

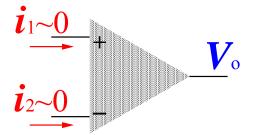
$$G_d = 1000$$
 and $G_c = 10$ \Rightarrow CMRR = $20\log(1000/10) = 40$ dB

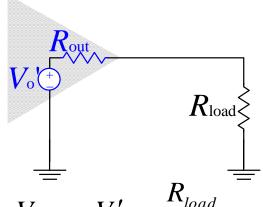
NB: This method is Not work! Why?

Op-Amp Properties

- (1) Infinite Open Loop gain
 - The gain without feedback
 - Equal to differential gain
 - Zero common-mode gain
 - Pratically, $G_d = 20,000 \text{ to } 200,000$
- (2) Infinite Input impedance
 - Input current i_i ~0A
 - $T-\Omega$ in high-grade op-amp
 - m-A input current in low-grade opamp
- (3) Zero Output Impedance
 - act as perfect internal voltage source
 - No internal resistance
 - Output impedance in series with load
- Reducing output voltage to the load Practically, $R_{\rm out} \sim 20 100 \, \Omega^{\rm parational Amplifier}$





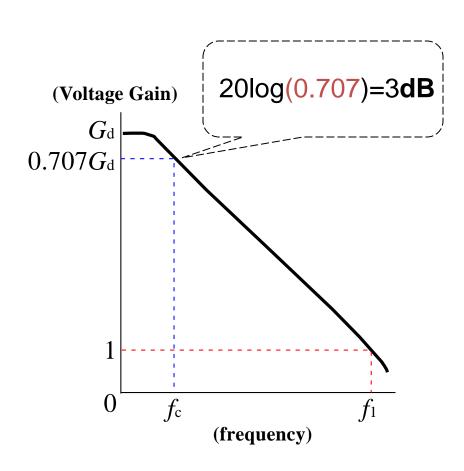


$$V_{load} = V_o' rac{R_{load}}{R_{load} + R_{out}}$$

Frequency-Gain Relation

- Ideally, signals are amplified from DC to the highest AC frequency
- Practically, bandwidth is limited
- 741 family op-amp have an
- Limity baindwiphten of fetveloaliz.at unity
- Cutoff frequency f_c : the gain drop by 3dB from dc gain G_d

GB Product : $f_1 = G_d f_c$



GB Product

Example: Determine the cutoff frequency of an op-amp having a unit gain frequency $f_1 = 10 \text{ MHz}$ and voltage differential gain $G_d = 20 \text{V/mV}$

Sol:

Since $f_1 = 10 \text{ MHz}$

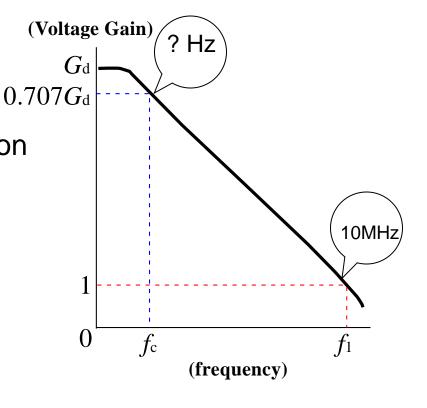
By using GB production equation

$$f_1 = G_{\rm d} f_{\rm c}$$

 $f_{\rm c} = f_{\rm 1} / G_{\rm d} = 10 \text{ MHz} / 20 \text{ V/mV}$

$$= 10 \times 10^6 / 20 \times 10^3$$

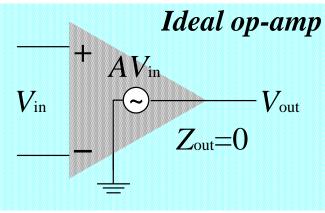
= 500 Hz

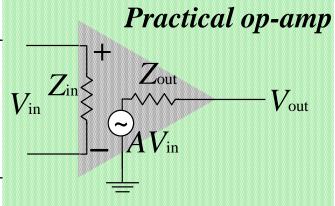


13

Ideal Vs Practical Op-Amp

	Ideal	Practical
Open Loop gain A	∞	10 ⁵
Bandwidth BW	oc	10-100Hz
Input Impedance Z_{in}	oc	$>1 \mathrm{M}\Omega$
Output Impedance Z_{out}	0 Ω	10-100 Ω
Output Voltage $V_{\rm out}$	Depends only on $V_d = (V_+ - V)$ Differential mode signal	Depends slightly on average input $V_c = (V_+ + V)/2$ Common-Mode signal
CMRR	∞	10-100dB





Ideal Op-Amp Applications

Analysis Method:

Two ideal Op-Amp Properties:

- (1) The voltage between V_{+} and V_{-} is zero $V_{+} = V_{-}$
- (2) The current into both V_{+} and V_{-} termainals is zero

For ideal Op-Amp circuit:

- (1) Write the kirchhoff node equation at the noninverting terminal V_+
- (2) Write the kirchhoff node eqaution at the inverting terminal V_{-}
- (3) Set $V_+ = V_-$ and solve for the desired closed-loop gain