Lecture 13

MOSFET

The Transfer Characteristics – Graphical Derivation

Operation as a Switch

SWITCH OFF

 Operate the MOSFET at the Extreme points of the Transfer Curve

v_l < V_t: switch is turned off and
 v_o = V_{DD} (operate between X and A)

SWITCH ON

 v_l = V_{DD}: switch is turned on and v_o is very small (operate at point C)

> MOSFET Operates as a "Digital Logic Inverter"

The Transfer Characteristics – Graphical Derivation

Operation as a Linear Amplifier 🖦

We make use of the Saturation _{Vow}

 mode segment of the curve (A
 Through B)

• The MOSFET is biased somewhere in the middle, e.g. point Q

• The AC signal to be amplified is, then superimposed on the DC Voltage V_{lQ}

• By keeping v_i sufficiently small, we restrict operation to the almost linear region between A and B

• Gain (A_v): $A_v = \frac{dv_o}{dv}$

Time:

The Transfer Characteristics – Graphical Derivation

Operation as a Linear Amplifier 🖦

 V_{DSQ} should be of such value to allow for the required output signal swing

 V_{DSQ} should be lower than VDD by sufficient amount to allow for the positive peaks of the output signal (sufficient headroom)

 V_{DSQ} should also be away from the boundary of the Triode region (point B) to allow for negative peaks (sufficient legroom)

How to Bias a MOSFET Amplifier?

- Bias Point Q1: does not leave sufficient room for positive signal swing at the drain (too close to VDD)
- Bias Point Q2: too close to the boundary of the Triode region and might not allow for sufficient negative signal swing

Analytical Expressions for the Transfer Characteristics

- Derive $v_o = f(v_v)$
- Cut-off Segment:

$$V_l \le V_t$$
 and $v_o = V_{DD}$

Saturation Segment:

$$\begin{aligned} \boldsymbol{v}_o &= \boldsymbol{V}_{DD} - \frac{1}{2} \boldsymbol{R}_D \boldsymbol{\mu}_n \boldsymbol{C}_{ox} \frac{\boldsymbol{W}}{L} (\boldsymbol{v}_l - \boldsymbol{V}_t)^2 \\ \boldsymbol{A}_v &= -\boldsymbol{R}_D \boldsymbol{\mu}_n \boldsymbol{C}_{ox} \frac{\boldsymbol{W}}{L} (\boldsymbol{V}_{lQ} - \boldsymbol{V}_t) \end{aligned}$$

· Triode Segment:

$$v_o = V_{DD} - R_D \mu_n C_{ox} \frac{W}{L} \left[(v_l - V_t) v_o - \frac{1}{2} v_o^2 \right]$$