
DATA STRUCTURES USING ‘C’

CSCE 3110
Data Structures & Algorithm
Analysis

Rada Mihalcea
http://www.cs.unt.edu/~rada/CSCE3110
Hashing
Reading: Chap.5, Weiss

http://www.cs.unt.edu/~rada/CSCE3110

How to Implement a Dictionary?

Sequences
ordered
unordered

Binary Search Trees
Skip lists
Hashtables

Hashing

Another important and widely useful
technique for implementing dictionaries
Constant time per operation (on the average)
Worst case time proportional to the size of the
set for each operation (just like array and
chain implementation)

Basic Idea

Use hash function to map keys into positions
in a hash table

Ideally
If element e has key k and h is hash function,
then e is stored in position h(k) of table
To search for e, compute h(k) to locate
position. If no element, dictionary does not
contain e.

Example

Dictionary Student Records
Keys are ID numbers (951000 - 952000), no more
than 100 students
Hash function: h(k) = k-951000 maps ID into
distinct table positions 0-1000
array table[1001]

...

0 1 2 3 1000

hash table

buckets

Analysis (Ideal Case)

O(b) time to initialize hash table (b number of
positions or buckets in hash table)
O(1) time to perform insert, remove, search

Ideal Case is Unrealistic

Works for implementing dictionaries, but many
applications have key ranges that are too large to have
1-1 mapping between buckets and keys!

Example:
Suppose key can take on values from 0 .. 65,535 (2
byte unsigned int)
Expect 1,000 records at any given time
Impractical to use hash table with 65,536 slots!

Hash Functions

If key range too large, use hash table with
fewer buckets and a hash function which maps
multiple keys to same bucket:

h(k1) = = h(k2): k1 and k2 have collision at slot

Popular hash functions: hashing by division
h(k) = k%D, where D number of buckets in hash table

Example: hash table with 11 buckets
h(k) = k%11
80 3 (80%11= 3), 40 7, 65 10
58 3 collision!

Collision Resolution Policies

Two classes:
(1) Open hashing, a.k.a. separate chaining
(2) Closed hashing, a.k.a. open addressing

Difference has to do with whether collisions
are stored outside the table (open hashing) or
whether collisions result in storing one of the
records at another slot in the table (closed
hashing)

Closed Hashing

Associated with closed hashing is a rehash strategy:
“If we try to place x in bucket h(x) and find it occupied,
find alternative location h1(x), h2(x), etc. Try each in
order, if none empty table is full,”
h(x) is called home bucket
Simplest rehash strategy is called linear hashing

hi(x) = (h(x) + i) % D

In general, our collision resolution strategy is to
generate a sequence of hash table slots (probe
sequence) that can hold the record; test each slot until
find empty one (probing)

Example Linear (Closed)
Hashing

D=8, keys a,b,c,d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

0

2

3

4

5

6

7

1

b

a
c

Where do we insert d? 3 already filled
Probe sequence using linear hashing:
h1(d) = (h(d)+1)%8 = 4%8 = 4
h2(d) = (h(d)+2)%8 = 5%8 = 5*
h3(d) = (h(d)+3)%8 = 6%8 = 6
etc.
7, 0, 1, 2

Wraps around the beginning of the
table!

d

Operations Using Linear
Hashing

Test for membership: findItem
Examine h(k), h1(k), h2(k), …, until we find k or an
empty bucket or home bucket
If no deletions possible, strategy works!
What if deletions?
If we reach empty bucket, cannot be sure that k is not
somewhere else and empty bucket was occupied when
k was inserted
Need special placeholder deleted, to distinguish bucket
that was never used from one that once held a value
May need to reorganize table after many deletions

Performance Analysis - Worst
Case

Initialization: O(b), b# of buckets
Insert and search: O(n), n number of
elements in table; all n key values have same
home bucket
No better than linear list for maintaining
dictionary!

Performance Analysis - Avg Case

Distinguish between successful and
unsuccessful searches

Delete = successful search for record to be deleted
Insert = unsuccessful search along its probe
sequence

Expected cost of hashing is a function of how
full the table is: load factor = n/b
It has been shown that average costs under
linear hashing (probing) are:

Insertion: 1/2(1 + 1/(1 -)2)
Deletion: 1/2(1 + 1/(1 -))

Improved Collision Resolution

Linear probing: hi(x) = (h(x) + i) % D
all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position
clustering of records, leads to long probing sequences

Linear probing with skipping: hi(x) = (h(x) + ic) % D
c constant other than 1
records with adjacent home buckets will not follow
same probe sequence

(Pseudo)Random probing: hi(x) = (h(x) + ri) % D
ri is the ith value in a random permutation of numbers
from 1 to D-1
insertions and searches use the same sequence of
“random” numbers

Example

0

1

2

3

4

5

6

7

8

9

10

1001

9537

3016

9874

2009

9875

h(k) = k%11

0

1

2

3

4

5

6

7

8

9

10

1001

9537

3016

9874

2009

9875

1. What if next element has home
bucket 0?

 go to bucket 3
Same for elements with home
bucket 1 or 2!
Only a record with home position
3 will stay.
 p = 4/11 that next
record will go to bucket 3

2. Similarly, records hashing to 7,8,9
will end up in 10
3. Only records hashing to 4 will end up
in 4 (p=1/11); same for 5 and 6

I

II
insert 1052 (h.b. 7)

1052

next element in bucket
3 with p = 8/11

Hash Functions - Numerical Values

Consider: h(x) = x%16
poor distribution, not very random
depends solely on least significant four bits of key

Better, mid-square method
if keys are integers in range 0,1,…,K , pick integer C
such that DC2 about equal to K2, then

h(x) = x2/C % D
extracts middle r bits of x2, where 2r=D (a base-D
digit)
better, because most or all of bits of key contribute
to result

Hash Function –
Strings of Characters

Folding Method:
int h(String x, int D) {

int i, sum;

for (sum=0, i=0; i<x.length(); i++)

sum+= (int)x.charAt(i);

return (sum%D);

}

sums the ASCII values of the letters in the string
• ASCII value for “A” =65; sum will be in range 650-900

for 10 upper-case letters; good when D around 100, for
example

order of chars in string has no effect

Hash Function –
Strings of Characters

Much better: Cyclic Shift
static long hashCode(String key, int D) {

int h=0;

for (int i=0, i<key.length(); i++){

h = (h << 4) | (h >> 27);

h += (int) key.charAt(i);

}

return h%D;

}

Open Hashing

Each bucket in the hash table is the head of a
linked list
All elements that hash to a particular bucket
are placed on that bucket’s linked list
Records within a bucket can be ordered in
several ways

by order of insertion, by key value order, or by
frequency of access order

Open Hashing Data
Organization

0

1

2

3

4

D-1

...

...

...

Analysis

Open hashing is most appropriate when the hash
table is kept in main memory, implemented with a
standard in-memory linked list

We hope that number of elements per bucket roughly
equal in size, so that the lists will be short
If there are n elements in set, then each bucket will
have roughly n/D
If we can estimate n and choose D to be roughly as
large, then the average bucket will have only one or
two members

Analysis Cont’d

Average time per dictionary operation:
D buckets, n elements in dictionary average
n/D elements per bucket
insert, search, remove operation take O(1+n/D)
time each
If we can choose D to be about n, constant time
Assuming each element is likely to be hashed to
any bucket, running time constant, independent
of n

Comparison with Closed
Hashing

Worst case performance is O(n) for both

Number of operations for hashing
23 6 8 10 23 5 12 4 9 19
D=9
h(x) = x % D

Hashing Problem

Draw the 11 entry hashtable for hashing the
keys 12, 44, 13, 88, 23, 94, 11, 39, 20 using the
function (2i+5) mod 11, closed hashing, linear
probing
Pseudo-code for listing all identifiers in a
hashtable in lexicographic order, using open
hashing, the hash function h(x) = first
character of x. What is the running time?

