
DATA STRUCTURES USING ‘C’

Lecture No.02

Data Structures

What is Program

n A Set of Instructions
n Data Structures + Algorithms
n Data Structure = A Container stores

Data
n Algoirthm = Logic + Control

Functions of Data Structures

n Add
– Index
– Key
– Position
– Priority

n Get
n Change
n Delete

Common Data Structures

n Array
n Stack
n Queue
n Linked List
n Tree
n Heap
n Hash Table
n Priority Queue

How many Algorithms?
n Countless

Algorithm Strategies

n Greedy
n Divide and Conquer
n Dynamic Programming
n Exhaustive Search

Which Data Structure or Algorithm is
better?

n Must Meet Requirement
n High Performance
n Low RAM footprint
n Easy to implement

– Encapsulated

Chapter 1 Basic Concepts

n Overview: System Life Cycle
n Algorithm Specification
n Data Abstraction
n Performance Analysis
n Performance Measurement

1.1 Overview: system life cycle (1/2)

n Good programmers regard large-scale
computer programs as systems that
contain many complex interacting parts.

n As systems, these programs undergo a
development process called the system
life cycle.

1.1 Overview (2/2)
n We consider this cycle as consisting of

five phases.
– Requirements
– Analysis: bottom-up vs. top-down
– Design: data objects and operations
– Refinement and Coding
– Verification

• Program Proving
• Testing
• Debugging

1.2 Algorithm Specification (1/10)

n 1.2.1 Introduction
– An algorithm is a finite set of instructions that

accomplishes a particular task.
– Criteria

• input: zero or more quantities that are externally supplied
• output: at least one quantity is produced
• definiteness: clear and unambiguous
• finiteness: terminate after a finite number of steps
• effectiveness: instruction is basic enough to be carried out

– A program does not have to satisfy the
finiteness criteria.

1.2 Algorithm Specification (2/10)

n Representation
– A natural language, like English or Chinese.
– A graphic, like flowcharts.
– A computer language, like C.

n Algorithms + Data structures =
Programs [Niklus Wirth]

n Sequential search vs. Binary search

1.2 Algorithm Specification (3/10)
n Example 1.1 [Selection sort]:

– From those integers that are currently unsorted, find the
smallest and place it next in the sorted list.

i [0] [1] [2] [3] [4]
- 30 10 50 40 20
0 10 30 50 40 20
1 10 20 40 50 30
2 10 20 30 40 50
3 10 20 30 40 50

1.2 (4/10)

n Program 1.3
contains a
complete program
which you may run
on your computer

1.2 Algorithm Specification (5/10)
n Example 1.2 [Binary search]:

[0] [1] [2] [3] [4] [5] [6]
8 14 26 30 43 50 52
left right middle list[middle] : searchnum

0 6 3 30 < 43
4 6 5 50 > 43
4 4 4 43 == 43
0 6 3 30 > 18
0 2 1 14 < 18
2 2 2 26 > 18
2 1 -

n Searching a sorted list
while (there are more integers to check) {

middle = (left + right) / 2;
if (searchnum < list[middle])

right = middle - 1;
else if (searchnum == list[middle])

return middle;
else left = middle + 1;

}

int binsearch(int list[], int searchnum, int left, int right) {
/* search list[0] <= list[1] <= … <= list[n-1] for searchnum.
Return its position if found. Otherwise return -1 */

int middle;
while (left <= right) {

middle = (left + right)/2;
switch (COMPARE(list[middle], searchnum)) {
case -1: left = middle + 1;

break;
case 0 : return middle;
case 1 : right = middle – 1;
}

}
return -1;

}

*Program 1.6: Searching an ordered list

1.2 Algorithm Specification (7/10)
n 1.2.2 Recursive algorithms

– Beginning programmer view a function as
something that is invoked (called) by another
function

• It executes its code and then returns control to the
calling function.

1.2 Algorithm Specification (8/10)

– This perspective ignores the fact that functions
can call themselves (direct recursion).

– They may call other functions that invoke the
calling function again (indirect recursion).

• extremely powerful
• frequently allow us to express an otherwise

complex process in very clear term
– We should express a recursive algorithm

when the problem itself is defined recursively.

1.2 Algorithm Specification (9/10)
n Example 1.3 [Binary search]:

1.2 (10/10)
n Example 1.4 [Permutations]:

lv0 perm: i=0, n=2 abc
lv0 SWAP: i=0, j=0 abc
lv1 perm: i=1, n=2 abc
lv1 SWAP: i=1, j=1 abc
lv2 perm: i=2, n=2 abc
print: abc
lv1 SWAP: i=1, j=1 abc
lv1 SWAP: i=1, j=2 abc
lv2 perm: i=2, n=2 acb
print: acb
lv1 SWAP: i=1, j=2 acb
lv0 SWAP: i=0, j=0 abc
lv0 SWAP: i=0, j=1 abc
lv1 perm: i=1, n=2 bac
lv1 SWAP: i=1, j=1 bac
lv2 perm: i=2, n=2 bac
print: bac
lv1 SWAP: i=1, j=1 bac
lv1 SWAP: i=1, j=2 bac
lv2 perm: i=2, n=2 bca
print: bca
lv1 SWAP: i=1, j=2 bca
lv0 SWAP: i=0, j=1 bac
lv0 SWAP: i=0, j=2 abc
lv1 perm: i=1, n=2 cba
lv1 SWAP: i=1, j=1 cba
lv2 perm: i=2, n=2 cba
print: cba
lv1 SWAP: i=1, j=1 cba
lv1 SWAP: i=1, j=2 cba
lv2 perm: i=2, n=2 cab
print: cab
lv1 SWAP: i=1, j=2 cab
lv0 SWAP: i=0, j=2 cba

1.3 Data abstraction (1/4)
n Data Type

A data type is a collection of objects and a
set of operations that act on those objects.
– For example, the data type int consists of the

objects {0, +1, -1, +2, -2, …, INT_MAX, INT_MIN}
and the operations +, -, *, /, and %.

n The data types of C
– The basic data types: char, int, float and double
– The group data types: array and struct
– The pointer data type
– The user-defined types

1.3 Data abstraction (2/4)
n Abstract Data Type

– An abstract data type(ADT) is a data type
that is organized in such a way that
the specification of the objects and
the operations on the objects is separated from
the representation of the objects and
the implementation of the operations.

– We know what is does, but not necessarily
how it will do it.

1.3 Data abstraction (3/4)
n Specification vs. Implementation

– An ADT is implementation independent
– Operation specification

• function name
• the types of arguments
• the type of the results

– The functions of a data type can be
classify into several categories:

• creator / constructor
• transformers
• observers / reporters

1.3 Data abstraction (4/4)
n Example 1.5 [Abstract data type

Natural_Number]

::= is defined as

