
DATA STRUCTURES USING ‘C’

Review: Records

Records Within Records
There is nothing to prevent us from placing records inside of records (a

field within a record):

Date_Type definesa record
day, month, year isoftype num

Endrecord

Student_Type definesa record
name isoftype string
gpa isoftype num
birth_day isoftype Date_Type
graduation_day isoftype Date_Type

endrecord

This name is now
a type which can

be used anywhere
a type such as
“Num” can be

used.

What are these called?

Types

LB

Record Within Records
Date_Type:

Student_Type:

bob isoftype Student_Type
bob.birth_day.month <- 6

day month year

day month year

name gpa

day month yearbirth_day

graduation_day

Types vs. Variables

TYPE Definitions
◦ Create templates for new kinds of variables
◦ Do not create a variable – no storage space is

allocated
◦ Have unlimited scope

VARIABLE Declarations
◦ Actually create storage space
◦ Have limited scope - only module containing the

variable can “see” it
◦Must be based on an existing data type

Dynamic Memory and Pointers

Dynamic vs. Static
Static (fixed in size)
• Sometimes we create data structures that

are “fixed” and don’t need to grow or
shrink.

Dynamic (change in size)
• Other times, we want the ability to

increase and decrease the size of our data
structures to accommodate changing
needs.

Static Data

• Static data is data declared “ahead of time.”

• It is declared in a module (or main algorithm) and “lives” for as long
as that module is active.

• If we declare more static variables than we need, we waste space.

• If we declare fewer static variables than we need, we are out of luck.

• Often, real world problems mean that we don’t know how many
variables to declare, as the number needed will change over time.

Dynamic Data

• Dynamic data refers to data structures which can
grow and shrink to fit changing data requirements.

• We can allocate (create) additional dynamic variables
whenever we need them.

• We can de-allocate (kill) dynamic variables whenever
we are done with them.

• A key advantage of dynamic data is that we can
always have a exactly the number of variables
required - no more, no less.

• For example, with pointer variables to connect them,
we can use dynamic data structures to create a chain
of data structures called a linked list.

Note

• Dynamic data gives us more flexibility

• Memory is still limited

• But now we can use it where we need it

• And we can determine that while the
program is running

LB

Examples?
Printer Queues
Airliners
uh, everything?

A View of Memory

Algorithm and Module Code
(What you wrote)

Stack (Static Area)
(Store stuff here)

Heap (Dynamic Area)
(Store stuff here)

LB

A List Example

• We must maintain a list of data
• Sometimes we want to use only a little memory:

• Sometimes we need to use more memory

• Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

• We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

The Stack

• Recall the activation stack
– The stack can expand, but as for the data…

– Each frame contains static (fixed size) data

Algo var1 var2 var3

Proc_1 this_var that_var

The number of
variables needed
come from the
“isoftype”
statements.

The Stack and Heap

•The heap is memory not used by the stack
• As stack grows, heap shrinks
• Static variables live in the stack
• Dynamic variables live in the heap

Main this_var that_var my_num_ptr4 7

12

What kind of variable is this???

Heap

Stack

LB

What?

• We know (sort of) how to get a pointer
variable

my_num_ptr isoftype Ptr toa
Num

• But how do we get it to point at something?

LB

The Built-In Function NEW()

• Takes a type as a parameter

• Allocates memory in the heap for the type

• Returns a pointer to that memory

my_num_ptr <- new(Num)
dynamic_string <- new(String)
list_head <- new(Node)

Accessing Dynamic Data via Pointers

• When we “follow a pointer”, we say that we
dereference that pointer

• The carat (^) means “dereference the
pointer”

• my_num_ptr^ means ”follow my_num_ptr
to wherever it points”

• My_num_ptr^ <- 43 is valid

43

Main my_num_ptr

Heap: Dynamic

Stack: Static

Ptr1 isoftype Ptr toa Num
Ptr2 isoftype Ptr toa Num
Ptr1 <- new(Num)
Ptr1^ <- 5
Ptr2 <- Ptr1
Print(Ptr1^, Ptr2^)
Ptr2^ <- 7
Print(Ptr1^, Ptr2^)

Num

5 55 5
7 7

Ptr1
Ptr

Ptr2
Ptr

57

Pointer
Animation of

Numbers
static dynamic

A record to hold two items of data - a name and a
SSN:

Student definesa record
name isoftype String
SSN isoftype num

endrecord

And a pointer to a Student record:

current isoftype ptr toa Student
current <- new(Student)

name
SSN

