
DATA STRUCTURES USING ‘C’

Lecture No.01

Data Structures

1. Reinforce the concept that costs and
benefits exist for every data structure.

2. Learn the commonly used data structures.
 These form a programmer's basic data structure

“toolkit”.

3. Understand how to measure the cost of a
data structure or program.
 These techniques also allow you to judge the

merits of new data structures that you or others
might invent.

 Data structures organize data more
efficient programs.

 More powerful computers more
complex applications.

 More complex applications demand more
calculations.

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

 Any organization for a collection of
records that can be searched, processed
in any order, or modified.

 The choice of data structure and algorithm
can make the difference between a
program running in a few seconds or
many days.

 A solution is said to be efficient if it solves
the problem within its resource
constraints.
 Space
 Time

 The cost of a solution is the amount of
resources that the solution consumes.

Select a data structure as follows:
1. Analyze the problem to determine the

resource constraints a solution must
meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

 Each data structure has costs and
benefits.

 Rarely is one data structure better than
another in all situations.

 A data structure requires:
 space for each data item it stores,
 time to perform each basic operation,
 programming effort.

 Elementary data structure that exists as
built-in in most programming languages.

main(int argc, char** argv)
{

int x[6];
int j;
for(j=0; j < 6; j++)

x[j] = 2*j;
}

 Array declaration: int x[6];
 An array is collection of cells of the same

type.
 The collection has the name ‘x’.
 The cells are numbered with consecutive

integers.
 To access a cell, use the array name and

an index:
x[0], x[1], x[2], x[3], x[4], x[5]

x[1]

x[2]

x[3]

x[4]

x[5]

x[0]
Array cells are
contiguous in
computer memory

The memory can be
thought of as an
array

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.
 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.
 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

 ‘x’ is not an lvalue

int x[6];
int n;

x[0] = 5;
x[1] = 2;

x = 3; // not allowed
x = a + b; // not allowed
x = &n; // not allowed

 You would like to use an array data structure
but you do not know the size of the array at
compile time.

 You find out when the program executes that
you need an integer array of size n=20.

 Allocate an array using the new operator:

int* y = new int[20]; // or int* y = new int[n]
y[0] = 10;
y[1] = 15; // use is the same

 ‘y’ is a lvalue; it is a pointer that holds the address
of 20 consecutive cells in memory.

 It can be assigned a value. The new operator
returns as address that is stored in y.

 We can write:

y = &x[0];
y = x; // x can appear on the right

// y gets the address of the
// first cell of the x array

 We must free the memory we got using
the new operator once we are done with
the y array.

delete[] y;

 We would not do this to the x array
because we did not use new to create it.

 The List is among the most generic of
data structures.

 Real life:

a. shopping list,
b. groceries list,
c. list of people to invite to dinner
d. List of presents to get

 A list is collection of items that are all of
the same type (grocery items, integers,
names)

 The items, or elements of the list, are
stored in some particular order

 It is possible to insert new elements into
various positions in the list and remove
any element of the list

 List is a set of elements in a linear order.
For example, data values a1, a2, a3, a4can be arranged in a list:

(a3, a1, a2, a4)

In this list, a3, is the first element, a1 is the
second element, and so on

 The order is important here; this is not
just a random collection of elements, it is
an ordered collection

Useful operations
 createList(): create a new list (presumably empty)
 copy(): set one list to be a copy of another
 clear(); clear a list (remove all elments)
 insert(X, ?): Insert element X at a particular position

in the list
 remove(?): Remove element at some position in

the list
 get(?): Get element at a given position
 update(X, ?): replace the element at a given position

with X
 find(X): determine if the element X is in the list
 length(): return the length of the list.

 We need to decide what is meant by
“particular position”; we have used “?” for
this.

 There are two possibilities:

1. Use the actual index of element: insert after
element 3, get element number 6. This
approach is taken by arrays

2. Use a “current” marker or pointer to refer to a
particular position in the list.

 If we use the “current” marker, the
following four methods would be useful:

 start(): moves to “current” pointer to the very
first element.

 tail(): moves to “current” pointer to the very
last element.

 next(): move the current position forward one
element

 back(): move the current position backward
one element

