Introduction

- A transformer is a static machines.
- The word 'transformer' comes form the word 'transform'.
- Transformer is not an energy conversion device, but is a device that changes AC electrical power at one voltage level into AC electrical power at another voltage level through the action of magnetic field, without a change in frequency.
- It can be either to step-up or step down.

CONSTRUCTION

- Power transformers are designed such that their characteristics approach the ideal:
- To attain high permeability, cores are made of iron based materials
- To minimise core losses, core is laminated from high resistivity, high-grade silicon steels
- Leakage reactances are minimised by cowinding of the coils

Transformer Construction

- Two types of iron-core construction:
 - a) Core type construction (the primary and secondary windings are wound on different legs
 - b) Shell type construction (wound on same leg i.e central limb)

Core - type construction

(a) cross-section of the core and the three primary windings

(b) alternate stacking of E- and I-sheets in pairs (rolling direction indicated)

- Laminated steel core

- Transformer core built from layers of steel laminate
- Positions of joints between layers alternated to give mechanical strength
- Carefully constructed to leave no air-gaps in corner where laminates overlap
 - Air-gaps lead to increased losses within core

Transformer Construction

Shell - type construction

Transformer cooling

Cooling of a transformer increases the rate of heat dissipation and hence improves the transformer rating:

- Low-voltage indoor transformers (<200kVA) can be passively air-cooled via natural convection
- Relative to air, oil is a better thermal conductor and electrical insulator, so it is invariably used for cooling of high-voltage, high-power transformers.

As power rating increases, radiators, heat exchangers and forced oil/air circulation may be added to improve power dissipation

Main elements of a transformer

Tank

- Transformer oil
- Bushings (for bringing out the terminals)
- Temperature gauge
- Oil gauge
- Conservator tank
- Gas operated relay (Buchholz relay)
- Breather

Ideal Transformer

An ideal transformer is a transformer which has no loses, i.e. it's winding has no ohmic resistance, no magnetic leakage, and therefore no I² R and core loses.

Zero leakage flux:

• Fluxes produced by the primary and secondary currents are confined within the core

The windings have no resistance:

- Induced voltages equal applied voltages
 The core has infinite permeability
 - Reluctance of the core is zero
- Negligible current is required to establish magnetic flux Loss-less magnetic core
 - No hysteresis or eddy currents

Ideal Transformer

N₁ : N₂

V1 – Primary Voltage
V2 – Secondary Voltage
E1 – Primary induced
Voltage
E2 – secondary induced
Voltage
N1:N2 – Transformer ratio

Faraday's Law states that,

If the flux passes through a coil of wire, a voltage will be induced in the turns of wire. This voltage is directly proportional to the rate of change in the flux with respect of time.

$$V_{ind} = Emf_{ind} = -\frac{d\Phi(t)}{dt}$$

If we have N turns of wire,

$$V_{ind} = Emf_{ind} = -N\frac{d\Phi(t)}{dt}$$

For an ac sources, • Let $V(t) = V_m \sin \omega t$ $i(t) = i_m \sin \omega t$ Since the flux is a sinusoidal function; $\Phi(t) = \Phi_m \sin \omega t$ Then: Therefore: $V_{ind} = Emf_{ind} = -N \frac{d\Phi_m \sin \omega t}{dt}$ $=-N\omega\Phi_m\cos\omega t$ Thus: $V_{ind} = Emf_{ind(max)} = N\omega\Phi_m = 2\pi f N\Phi_m$ $Emf_{ind(rms)} = \frac{N\omega\Phi_m}{\sqrt{2}} = \frac{2\pi f N\Phi_m}{\sqrt{2}} = 4.44 f N\Phi_m$

For an ideal transformer

 $E_1 == 4.44 f N_1 \Phi_m$ $E_2 == 4.44 f N_2 \Phi_m$

In the equilibrium condition, both the input power will be equaled to the output power, and this condition is said to ideal condition of a transformer.

..... (i)

Input power = output power $V_1 I_1 \cos \theta = V_2 I_2 \cos \theta$ $\therefore \frac{V_1}{V_2} = \frac{I_2}{I_1}$

From the ideal transformer circuit, note that,

$$E_1 = V_1 \ and \ E_2 = V_2$$

Hence, substitute in (i)

Therefore,
$$\frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = a$$

Where, 'a' is the Voltage Transformation Ratio; which will determine whether the transformer is going to be step-up or step-down

For a >1 \longrightarrow $E_1 > E_2 \longrightarrow$

For a <1 \longrightarrow $E_1 < E_2 \longrightarrow$

Transformer Rating

- Transformer rating is normally written in terms of Apparent Power.
- Apparent power is actually the product of its rated current and rated voltage.

$$VA = V_1 I_1 = V_2 I_2$$

Where,

- I_1 and I_2 = rated current on primary and secondary winding.
- V_1 and V_2 = rated voltage on primary and secondary winding.
- Rated currents are actually the full load currents in transformer

 1. 1.5kVA single phase transformer has rated voltage of 144/240 V. Finds its full load current.
 Solution

$$I_{1FL} = \frac{1500}{144} = \underline{10.45A}$$
$$I_{2FL} = \frac{1500}{240} = \underline{6A}$$

2. A single phase transformer has 400 primary and 1000 secondary turns. The net cross-sectional area of the core is $60m^2$. If the primary winding is connected to a 50Hz supply at 520V, calculate: a) The induced voltage in the secondary winding b) The peak value of flux density in the core Solution A=60m² $N_1 = 400 \quad V_1 = 520V$ $N_2 = 1000 \quad V_2 = ?$

- A 25kVA transformer has 500 turns on the primary and 50 turns on the secondary winding. The primary is connected to 3000V, 50Hz supply. Find:
 - a) Full load primary current
 - b) The induced voltage in the secondary winding
 - c) The maximum flux in the core

Transformer on no-load

$$E_{da} = V_{bc} = V_1$$

$$V_{ef} = E_{fe} = V_2$$

$$I_0$$

WWW.i

Real Transformer

Practical Transformer (Equivalent Circuit)

 V_1 = primary supply voltage

 $V_2 = 2^{nd}$ terminal (load) voltage

- E_1 = primary winding voltage
- $E_2 = 2^{nd}$ winding voltage
- I_1 = primary supply current
- $I_2 = 2^{nd}$ winding current
- I_1 = primary winding current
- $I_o =$ no load current

- $I_c = core current$
- I_m = magnetism current
- R₁= primary winding resistance
- R₂= 2nd winding resistance
- X₁= primary winding leakage reactance
- $X_2 = 2^{nd}$ winding leakage reactance
- R_c = core resistance

Single Phase Transformer (Referred to Primary)

Actual Method

 I_2

$$R_2' = \left(\frac{N_1}{N_2}\right)^2 R_2 \quad OR \quad R_2' = a^2 R_2$$

 X_2

$$= \left(\frac{N_1}{N_2}\right)^2 X_2 \quad OR \quad X_2' = a^2 X_2$$

Single Phase Transformer (Referred to Primary)

Approximate Method

$$R_2' = \left(\frac{N_1}{N_2}\right)^2 R_2 \quad OR \quad R_2' = a^2 R_2$$

$$X_{2}' = \left(\frac{N_{1}}{N_{2}}\right)^{2} X_{2} \quad OR \quad X_{2}' = a^{2} X_{2}$$

$$E_1 = V_2' = \left(\frac{N_1}{N_2}\right) V_2 \quad OR \quad V_2' = aV_2$$
$$I_2' = \frac{I_2}{a}$$

Single Phase Transformer (Referred to Primary)

Approximate Method

In some application, the excitation branch has a small current compared to load current, thus it may be neglected without causing serious error.

$$R_2' = \left(\frac{N_1}{N_2}\right)^2 R_2 \quad OR \quad R_2' = a^2 R_2$$

$$X_{2}' = \left(\frac{N_{1}}{N_{2}}\right)^{2} X_{2} \quad OR \quad X_{2}' = a^{2} X_{2}$$

$$V_2' = \left(\frac{N_1}{N_2}\right) V_2 \quad OR \quad V_2' = aV_2$$

$$R_{01} = R_1 + R_2'$$

 $X_{01} = X_1 + X_2'$

Single Phase Transformer (Referred to Secondary)

Actual Method

$$R_1' = \left(\frac{N_2}{N_1}\right)^2 R_1 \quad OR \quad R_1' = \frac{R_1}{a^2}$$

$$X_{1}' = \left(\frac{N_{2}}{N_{1}}\right)^{2} X_{1} \quad OR \quad X_{1}' = \frac{X_{1}}{a^{2}}$$

$$V_1' = \left(\frac{N_2}{N_1}\right) V_1 \quad OR \quad V_1' = \frac{V_1}{a}$$

Single Phase Transformer (Referred to Secondary)

Approximate Method

Neglect the excitation branch

$$R_{02} = R_1' + R_2$$

 $X_{02} = X_1' + X_2$

$$V_1' = \left(\frac{N_2}{N_1}\right) V_1 \quad OR \quad V_1' = \frac{V_1}{a}$$

$$R_1' = \left(\frac{N_2}{N_1}\right)^2 R_1 \quad OR \quad R_1' = \frac{R_1}{a^2}$$

 ~ 2

$$X_1' = \left(\frac{N_2}{N_1}\right) X_1 \quad OR \quad X_1' = \frac{X_1}{a^2}$$

$$I_1' = aI_1$$

Power factor always lagging for real transformer.

Transformer losses

Transformer losses consist of:

Copper losses in the windings

- Depend on load current
- Hysteresis and eddy-current losses in the core Constant for constant flux (constant voltage) conditions
- Eddy current losses are eliminated by laminations. The thickness of laminations varies from 0.35mm to 0.5mm.Laminations are insulated from each other by coating them with a thin coat of varnish

Stray losses due to currents induced by leakage fluxes in the transformer structure Negligible for a welldesigned transformer

Transformer Losses Generally, there are two types of losses;

Iron losses :- occur in core parameters

- ii. Copper losses :- occur in winding resistance
- i. <u>Iron Losses</u>

ii. Copp
$$P_{iron} = P_c = (I_c)^2 R_c = P_{open \ circuit}$$

$$P_{copper} = P_{cu} = (I_1)^2 R_1 + (I_2)^2 R_2 = P_{short \ circuit}$$

or if referred, $P_{cu} = (I_1)^2 R_{01} = (I_2)^2 R_{02}$

 P_{oc} and P_{sc} will be discusses fater in transformer test

Measurement on Transformer

- There are two test conducted on transformer.
- i. Open Circuit Test
- ii. Short Circuit test
- The test is conducted to determine the parameter of the transformer.
- Open circuit test is conducted to determine magnetism parameter, R_c and X_m.
 - Short circuit test is conducted to determine the copper parameter depending where the test is performed. If performed at primary, hence the parameters are R_{01} and X_{01} and vice-versa.

Open Circuit Test

Open-Circuit Test

Measurement are at high voltage side

From a given test parameters,

$$P_{oc} = V_{oc} I_{oc} \cos \theta_{oc}$$
$$\theta_{oc} = \cos^{-1} \left(\frac{P_{oc}}{V_{oc} I_{oc}} \right)$$

Hence,

$$I_{c} = I_{oc} \cos \theta_{oc}$$
$$I_{m} = I_{oc} \sin \theta_{oc}$$

Then, R_c and X_m ,

$$R_c = \frac{V_{oc}}{I_c}, X_m = \frac{V_{oc}}{I_m}$$

Note:

If the question asked parameters referred to Low voltage side, the parameters (R_c and X_m) obtained need to be referred to low voltage side

Equivalent Ckt. parameters

- Open Circuit Test: Secondary (normally the HV winding) is open, that means there is no load across secondary terminals; hence there is no current in the secondary.
- Winding losses are negligible, and the source mainly supplies the core losses, Pcore.
- Parameters obtained: Test is done at rated voltage with secondary open. So, the ammeter reads the no-load current, Io; the wattmeter reads the core losses, and the voltmeter reads the applied primary voltage.

Short Circuit Test

Cont.

Equivalent circuit parameters

Secondary (normally the LV winding) is shorted, that means there is no voltage across secondary terminals; but a large current flows in the secondary.

Parameters obtained: Test is done at reduced voltage (about 5% of rated voltage) with full-load current in the secondary. So, the ammeter reads the full-load current, Ip; the wattmeter reads the winding losses, and the voltmeter reads the applied primary voltage

Short-Circuit Test

- Measurement are at low voltage side
- If the given test parameters are taken on primary side, R_{01} and X_{01} will be obtained. Or else, vice-versa.

Transformer Efficiency

- To check the performance of the device, by comparing the output with respect to the input.
- The higher the efficiency, the better the system.

$$Efficiency, \eta = \frac{Output Power}{Input Power} \times 100\% \qquad \eta_0$$
$$= \frac{P_{out}}{P_{out} + P_{losses}} \times 100\% \qquad \eta_0$$
$$= \frac{V_2 I_2 \cos \theta}{V_2 I_2 \cos \theta + P_c + P_{cu}} \times 100\%$$

$$\eta_{(full \, load)} = \frac{VA\cos\theta}{VA\cos\theta + P_c + P_{cu}} \times 100\%$$
$$\eta_{(load \, n)} = \frac{nVA\cos\theta}{nVA\cos\theta + P_c + n^2 P_{cu}} \times 100\%$$

Where, if $\frac{1}{2}$ load, hence $n = \frac{1}{2}$, $\frac{1}{4}$ load, $n = \frac{1}{4}$, 90% of full load, n = 0.9

Where $P_{cu} = P_{sc}$ $P_{c} = P_{oc}$

Voltage Regulation

- The purpose of voltage regulation is basically to determine the percentage of voltage drop between no load and full load.
- Voltage Regulation can be determine based on methods:
 - a) Basic Definition
 - b) Equivalent Circuit

Voltage Regulation (Basic Definition)

- In this method, all parameter are being referred to primary or secondary side.
- Can be represented in either
 - Down voltage Regulation

$$V.R = \frac{V_{NL} - V_{FL}}{V_{NL}} \times 100\%$$

$$\frac{\text{Up-Voltage Regulation}}{V.R = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\%$$

Voltage Regulation

In this method, direct formula can be used.

$$V.R = \frac{I_2 R_{02} \cos \phi \pm I_2 X_{02} \sin \phi}{E_2} \times 100\%$$

$$V.R = \frac{I_1 R_{01} \cos \phi \pm I_1 X_{01} \sin \phi}{V_1} \times 100\%$$

Note that:

'+' is for Lagging power factor
'-' is for Leading power factor
I₂ must equal to I_{FL}

Voltage Regulation (Equivalent Circuit)

In this method, the parameters must be referred to primary or secondary

Note that:

'+' is for Lagging power factor'-' is for Leading power factorj terms ~0

 In example 5, determine the Voltage regulation by using down – voltage regulation and equivalent circuit.
 Solution

Down – voltage Regulation

Know that, V_{2FL} =422.6V V_{2NL} =440V

Therefore,

$$V.R = \frac{V_{NL} - V_{FL}}{V_{NL}} \times 100\%$$
$$= \frac{440 - 422.6}{440} \times 100\%$$
$$= \underline{3.95\%}$$

 A short circuit test was performed at the secondary side of 10kVA, 240/100V transformer. Determine the voltage regulation at 0.8 lagging power factor if

$$V_{sc} = 18V$$

 $I_{sc} = 100$
 $P_{sc} = 240W$

Solution

Check:

$$I_{FL_2} = \frac{VA}{V} = \frac{10000}{100} = 100A$$
$$I_{FL_2} = I_{sc},$$

Hence, we can use short-circuit method

$$V.R = \frac{V_{sc} \cos\left(\theta_{sc} \mp \theta_{p.f}\right)}{V_2} \times 100\%$$

8. The following data were obtained in test on 20kVA 2400/240V, 60Hz transformer.

 $V_{sc} = 72V$ $I_{sc} = 8.33A$ $P_{sc} = 268W$ $P_{oc} = 170W$

The measuring instrument are connected in the primary side for short circuit test. Determine the voltage regulation for 0.8 lagging p.f. (use all 3 methods), full load efficiency and half load efficiency.

- 9. Given the test on 500kVA 2300/208V are as follows:
 - $P_{oc} = 3800W$ $P_{sc} = 6200W$
 $V_{oc} = 208V$ $V_{sc} = 95V$
 $I_{oc} = 52.5A$ $I_{sc} = 217.4A$

Determine the transformer parameters and draw equivalent circuit referred to high voltage side. Also calculate appropriate value of V_2 at full load, the full load efficiency, half load efficiency and voltage regulation, when power factor is 0.866 lagging.

[1392Ω, 517.2Ω, 0.13Ω, 0.44Ω, 202V, 97.74%, 97.59%, 3.04%]

Miscellaneous

Humming noise

Humming losses: - The alternating current in the transformer may set its parts into vibrations and sound may be produced. This sound produced is called humming. Thus a part of energy is lost in the form of sound energy