LECTURE 25

Instruction set

Topics to be covered

e |nstructions sets
* Program detalls
e subroutines

Instruction Set:

The instruction set for PIC16Cxx consists of only 35 instructions.
Some of these instructions are byte oriented instructions and some are
bit oriented instructions.

The byte oriented instructions that require two parameters .

For example, movf f, F(W) expect the f to be replaced by the name of a
special purpose register (e.g., PORTA) or the name of a RAM variable
(e.g., NUM1), which serves as the source of the operand. 'f' stands for file
register.

The F(W) parameter is the destination of the result of the operation. It
should be replaced by:

F, if the destination is to be the source register.
W, if the destination is to be the working register (i.e., Accumulator or W
register).

The bit oriented instructions also expect parameters.

(bfs f, b). Here 'f' is to be replaced by the name of a special
purpose register or the name of a RAM variable. The 'b’
parameter is to be replaced by a bit number ranging from 0 to 7.

For example:
Zequ 2
bfs STATUS, Z

Z has been equated to 2. Here, the instruction will set the Z bit of
the STATUS register.

The literal instructions require an operand having a

known value (e.g., OAH) or a label that represents a
known value.

For example:

NUM equ OAH ; Assigns 0AH to the label NUM (a constant)

moviw NUM ; will move OAH to the W register.

Instruction Set:

1. Single-bit manipulation:

beft b Clear bit b of register £
bstf, b Set bit b of register £

Example:

2.Clear/Move

clrw Clear working register W
clrf Clear

movlw k Move literal 'k' to W
movwt t Move W to

movtit, F(W) Move fto F or W
swapft £, F(W) 2;1&? nibbles of f, putting result in F

Example:

complement
inet 1EMP. ¥ Increnent TENP]
inef TEMPL, W (N <~ TEMPL o L; TEMPL unchanged
decf TEMPL,F Decrement TENP!
conf TEMPL,F {Change 08 to s and I8 to 0s

Multiple Bit Manipulation:

andlw k
andwf £, F(W)

andwf £, F(W)
1orlw k

iorwt £, F(W)
xorlw k

xorwt £, F(W)

Example:

And literal value into W

And W with F and put the result in
W or F

And W with F and put the result in
W or F

mclusive-OR Iiteral value into W
mclusive-OR W with f and put the
result in F or W

Exclusive-OR literal value into W
Exclusive-OR W with f and put the
result in F or W

Addition/Subtraction:

addlw k
addwt £, F(W)
sublw k

subwt £, F(W)

Example:

Add the literal value to W and store
the result mn W

Add W to f and store the result in F
or W

Subtract the literal value from W
and store the result in W

Subtract f from W and store the
resultin F or W

Rotate:

Hep Copy finto F or W; rotate F or W
(i1, F(W) left through the carry bit

, Copy finto F or W: rotate F or W
et £, E(W) right through the carry bit

Example:

Conditional Branch:

Test 'b' bit of the register f and skip
the next instrmction if bit is clear
Test 'D' bit of the register £ and skip
the next instruction 1f bit 1s set
Decrement f and copy the result to
dectfsz £f. F(W) [F or W: skip the next instruction if

the result 1s zero

Increment f and copyv the result to F
imcfcz £ FCW) or W: skip the next instruction if
the result 1s zero

btfsc f. b

btfss f. b

Example:

Call/Go to/Return/Return from interrupt

coto label
call label

retrann

retlw Ik

retie

Aiscellaneous:

cliwdt
sleep
nop

Go to the instraction with the label
"label"

Go to the subroutine "label™. push
the Program Counter in the stack
Feturn from the subroutine. POP
the Program Counter from the stack
Retimn from the subroutine., POP
the Program Counter from the
stack: put k in W

Feturm from Interrupt Service
Foutine and re-enable intermpt

Clear Watch Dog Timer
Go 1into sleep/ stand by mode
No operation

Program Documentation

Good code documentation is essential if programs are to be
maintained.

The header should provide all the important processor details and
Identify the programmer. Most importantly, it should contain a
FUNCTION statement which tells the reader what the processor needs
to be connected to, exactly which I/O pins are connected to which
devices and what the program does.

Labels should be meaningful. They should help to make your code
more readable. Try to avoid using labels which may be reserved words
(see assembler directives).

Comments should be clear and concise. They should summarise
Important functionality. Comments often summarise the function of
several lines by using \ and / characters to tie lines together (see code
examples).

A clear columnar structure also helps code to be more readable.

Separating equate and sub-routine
components and providing short headings

Code Structure and
Documentation

FreeRes GENERAL EQUATES — ————mm o e oo
W EQU 0
F EQU 1
RBIF EQU 0
RBIE EQU 3
GIE EQU 7
e 1/0 EQUATES = —mmm e
PORTA EQU 0X05 :
PORTB EQU 0X06 :
GG REGISTER EQUATES == - == mm oo oo
INTCON EQU 0XOB .
MCOUNT EQU 0X0C :
NCOUNT EQU 0XOD .
LED VAL EQU OXOE .
TEMP._ W EQU OXOF .
ORG 0X00
GOTO START
ORG 0X04
GOTO INT_SER

Code Structure and
Documentation

s MAIN PROGRAMME

START MOVLW OXFF ;— CONFIGURE PORTA AS INPUTS

TRIS PORTA o/
MOVLW 0X80

END

Subroutines

« Subroutines are a sequence of instructions for performing a particular
task. They generally make code more efficient because their functions
can be re-used.

» Subroutines are normally placed before the main program after the
ORG and GOTO lines.

» They are implemented using CALL and RETURN (or RETLW).

» When a CALL instruction is encountered, the program counter is
“pushed” onto the stack. A new value is loaded into the program
counter and instruction execution starts from the new address.

« When a RETURN or RETLW instruction is encountered, the program
counter is restored by “popping” the stack.

e You should use a subroutine when you need to perform a task and then
continue with a previous task (otherwise, use GOTO.)

» Can a subroutine be called from within another? Yes. The limit to the
depth of nesting is the depth of the program counter stack. The
PIC16F84 has a program stack depth of 8.

