
LECTURE 25

Instruction set

Topics to be coveredTopics to be covered
 Instructions sets
 Program details
 subroutines

Instruction Set:
The instruction set for PIC16Cxx consists of only 35 instructions.
Some of these instructions are byte oriented instructions and some are
bit oriented instructions.

The byte oriented instructions that require two parameters .
For example, movf f, F(W) expect the f to be replaced by the name of a
special purpose register (e.g., PORTA) or the name of a RAM variable
(e.g., NUM1), which serves as the source of the operand. 'f' stands for file
register.
The F(W) parameter is the destination of the result of the operation. It
should be replaced by:

F, if the destination is to be the source register.
W, if the destination is to be the working register (i.e., Accumulator or W
register).

The bit oriented instructions also expect parameters.
(bfs f, b). Here 'f' is to be replaced by the name of a special
purpose register or the name of a RAM variable. The 'b'
parameter is to be replaced by a bit number ranging from 0 to 7.

For example:
Z equ 2
bfs STATUS, Z

Z has been equated to 2. Here, the instruction will set the Z bit of
the STATUS register.

The literal instructions require an operand having a
known value (e.g., 0AH) or a label that represents a
known value.

For example:

NUM equ 0AH ; Assigns 0AH to the label NUM (a constant)

movlw NUM ; will move 0AH to the W register.

Instruction Set:

Program DocumentationProgram Documentation
 Good code documentation is essential if programs are to be

maintained.
 The header should provide all the important processor details and

identify the programmer. Most importantly, it should contain a
FUNCTION statement which tells the reader what the processor needs
to be connected to, exactly which I/O pins are connected to which
devices and what the program does.

 Labels should be meaningful. They should help to make your code
more readable. Try to avoid using labels which may be reserved words
(see assembler directives).

 Comments should be clear and concise. They should summarise
important functionality. Comments often summarise the function of
several lines by using \ and / characters to tie lines together (see code
examples).

 A clear columnar structure also helps code to be more readable.
Separating equate and sub-routine
components and providing short headings

Code Structure and Code Structure and
DocumentationDocumentation

; ----- GENERAL EQUATES ---
W EQU 0
F EQU 1
RBIF EQU 0
RBIE EQU 3
GIE EQU 7
; ----- I/O EQUATES --
PORTA EQU 0X05 ;
PORTB EQU 0X06 ;
; ----- REGISTER EQUATES ---
INTCON EQU 0X0B ;
MCOUNT EQU 0X0C ;
NCOUNT EQU 0X0D ;
LED_VAL EQU 0X0E ;
TEMP_W EQU 0X0F ;
; ---

ORG 0X00
GOTO START
ORG 0X04
GOTO INT_SER

Code Structure and Code Structure and
DocumentationDocumentation

; ----------------------- MAIN PROGRAMME --------------------------------

START MOVLW 0XFF ;- CONFIGURE PORTA AS INPUTS

TRIS PORTA ;/

MOVLW 0X80

…

END

SubroutinesSubroutines
 Subroutines are a sequence of instructions for performing a particular

task. They generally make code more efficient because their functions
can be re-used.

 Subroutines are normally placed before the main program after the
ORG and GOTO lines.

 They are implemented using CALL and RETURN (or RETLW).
 When a CALL instruction is encountered, the program counter is

“pushed” onto the stack. A new value is loaded into the program
counter and instruction execution starts from the new address.

 When a RETURN or RETLW instruction is encountered, the program
counter is restored by “popping” the stack.

 You should use a subroutine when you need to perform a task and then
continue with a previous task (otherwise, use GOTO.)

 Can a subroutine be called from within another? Yes. The limit to the
depth of nesting is the depth of the program counter stack. The
PIC16F84 has a program stack depth of 8.

