LECTURE 18

Program Branching Instruction Set

Topics to be covered

e Program Branching Instruction

Program Branching Instructions

¢ Program branching
Instructions are used to
control the flow of actions
In @ program

¢ Some instructions provide
decision making
capabilities and transfer
control to other parts of the
program, e.g. conditional
and unconditional branches

Mnemonic

Description

ACALL addrii

Absolute subroutine call

LCALL addrig

Long subroutine call

RET Return from subroutine
RETI Return from intermupt
AIJMP addrid Absolute jump

LJMP addrié Long jump

SIMP rel Short jump

JMP @A+DPTR

Jump indirect

JZ rel

Jump if A=0

JHZ rel

Jump if A NOT=0

CJNE A.direct,rel

CJNE A,#data,rel

CJHE Rn#Zdata.rel

CJHE @Ri#data,rel

Compare and Jump if Mot Equal

DJHNZ Rn,rel

DJNZ direct,rel

Decrement and Jump if Not
Zero

NOP

Mo Operation

ACALL addr11

*

*

This instruction unconditionally calls a subroutine indicated by the
address

The operation will cause the PC to increase by 2, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

The PC is now loaded with the value addr17 and the program execution
continues from this new location

The subroutine called must therefore start within the same 2 kB block of
the program memory

No flags are affected

Example:
ACALL LOC _SuB

LCALL addr16

+

This instruction calls a subroutine located at the indicated address

The operation will cause the PC to increase by 3, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

The PC is then loaded with the value addr16 and the program execution
continues from this new location

Since it is a Long call, the subroutine may therefore begin anywhere in
the full 64 kB program memory address space

No flags are affected

Example:
LCALL LOC_SUB

¢ This instruction returns the program from a subroutine

¢ RET pops the high byte and low byte address of PC from
the stack and decrements the SP by 2

¢ The execution of the instruction will result in the program to
resume from the location just after the “call” instruction

¢ No flags are affected

¢ Suppose SP=0BH originally and internal RAM locations 0AH
and 0BH contain the values 30H and 02H respectively. The
Instruction leaves SP=09H and program execution will
continue at location 0230H P

{)

¢ This instruction returns the program from an interrupt
subroutine

¢ RETI pops the high byte and low byte address of PC from
the stack and restores the interrupt logic to accept additional
Interrupts

¢ SP decrements by 2 and no other registers are affected.
However the PSW is not automatically restored to its pre-
Interrupt status

¢ After the RETI, program execution will resume immediately
after the point at which the interrupt is detected

¢ Suppose SP=0BH originally and an interrupt is detected
during the instruction ending at location 0213H

