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Coulomb’s Law of Electro-Static Force

32. COULOMB’S LAW OF ELECTROSTATIC FORCE N

| Conclusions drawn by Charles Augustin De Coulombs in 1785 on the basis of expex
known as Coulomb’s Law or inverse square law which gives the force existing between twe
Coulomb’s Law states that "the force (F) between two charges ( Q1 and Q2 ) variés
product of the charges and inversely as the square of the distance between them".
Mathematically Foc U _ k _Qﬁg Newton

PR

where F = Force experienced, in Newton ; 01, ‘0 = charges, in coulombs.

r = distance between two charges Q1 and Q2 , in metres.
k = Proportionality Constant. -
k = 1/4ne in International system of units (ST) or rationalized MK.S. System of
where ¢ is the permittivity or dielectric constant of medium in which the two chargs
situated and is related as - -
£ =&t

Here - g0 = Permittivity of free space = 8.854 X 1_0‘12 Farad/ metre
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g — 1/411'8 in International system of units (SD) or ratmnahzed MK.S. §

where € is the permittivity or dielectric constant of medium in wh‘ich ﬂle "’ S
situated and is related as - _ % “ﬁ

£ = wos ;;;
Here €0 = Permittivity of free space = 8.854 x 10‘12 Faradx - '_
i 1 : > but
ST o i
and &= Relative permittivity of the medium w.r.t. f_rec mﬂm

= 1 for free space or air
“ € = £ “uiuereen. fOISpace or air
ﬁence'Eqn. (3.1) can be written as

__1 00 :
o= yom 2 Newton (m medmm)r--

. | _ 1 00
aqd __ F = T Newtons ( in air/ vam) '

L}EZ =F B
if we assume that medium between the two charges is vacuum or air. Ine
in the denominator of Coulomb’s Law so that the same would not appear
etc. This simplifies the relations in electromagnetic theory The unit sym 1 with



3.3. ELECTRIC FIELD INTENSITY ' -1
Electric field intensity or simply electric intensity or electric field is denoted by B. i 2

probe) charge q is placed at any point near a second fix char '

_ dat | ge (Q), the probe charge
The magnitude and the direction of this will depend upon the location of the probe cﬁmy}q)i :
Q-. About the charge ), there is said to be an electric field of strength E and the magnmhﬂ
1s measured as force per unit charge at that point. The direction of E is the direction of hucq '

test charge along the outward radial from the positive charge Q as illustrated in Fig, 3.2.
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(a) charge with positive numerical value. (b) charge with negative numerical value.

Fig.3.2. Fixed change Q with veclors showing magnitude and direction of associated electric field
Thus, the electric intensity E may be defined as "The force per unit charge exerted ona lut

charoe in the field" Ttic camatimaa alam aallasd an M7y 2 .
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(a) charge with positive numerical value. (b) charge with negative numerical value

Fig. 3.2. Fixed change Q with vectors Showing magnitude and direction of associated electric field
Thus, the electric intensity E may be defined as "The force per unit charge exerted on a test
charge in the field" . It is sometimes also called as "Electric field strength” and its unit is volt /

be found by applying Coulomb’ Law, Eq. 3.5. The magnitnde of the force on’the test
given by

0.9
F =
4rer
and the magnitude of the electric field intensity E due to fixed charge Q at test charge qis
o e R o E=_%
9 g-4me r dmert

Thus from Eqn 3 6 and3 7 1t is Clear that the force on the test charge ¢ is dependent upon

.-.l'-' "Lﬂ. ammat o _L



F=2:4

4ner’ 1
and the magnitude of the electric field intensity E due to fixed charge Q at test Charge g is i
= f— = -9 or = 0 1

9 g-4n¢ r 4rert

Thus from Eqn. 3.6 and 3.7, it is clear that the force on the test charge ¢ is dependent upon
of the probe charge but Electric field intensity is not. Therefore, if the charge on the test charge is al
approach zero, then the force per unit charge remains constant i.e. electric field due to fixed chs
considered to exist immaterial whether test charge ¢ is there to detect its presence or not

The direction and magnitude of electric field about 2 point charge (g = 1 for point chmgej
indicated by writing Eq. 3.7 in vector form e.g. -4

0
E = a,
4drert

where @, = unit vector along the outward radial from the charge Q. |

. If the test charge g is made small enough, so that it may be regarded as of infinitesimal size,
ultimate value of the electric field intensity at a point becomes the force AF on a positive test :
divided by the charge Aq with the limit taken as the charge approaches zeroie. | ‘-

=
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RIC FIELD DUE TO SEVERAL POINT CHARGES

[Bang. Univ. BE (Su
atestcharge gis situated at a point (say P) in the field of a sing

le charge Q, it experi
oulomb’s Law as
F = —Q—L a, Newtons
| 4 mer?
=ld intensity E is given by Eqn. 3.8 (a)
4mer?

i= several charges present, each charge will exert a force on the test charge at P, the

‘of which is given by Eq. 3.7 (@). The resultant or total force on q is the vector sum of
£ into account both the direc

tion and the magnitude of the force. Hence the electric i

intensities due to each charge acting alone. This is ca
i superposition. |

J1,02,03....0, be the charge located at a distance ri,
atensity at point P is the given by

L. G+ Q2 O3 On a,
411:5::'3

72,73 ....r, from the point ?
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An electric field is a field of force. If a body being acted upon by a force is moved from{
to another, work will be done on or by the body. If some point is taken as reference or zero point &%
force can be described by the work that must be done in moving the body from reference point qﬂ!
in the field.

A reference point that is usually used is a point at infinity. For exampie, if a small body
0 and a second body with a small test charge g is moved from mﬁnuy along a radius line to 2
distance R from the charge 0, then work done (W) on the system in moving the test charge g '
F is given by

R E

W=-| F.a q

3 4

By Coulomb’s Law Fi= 9 1
. dnert |

W= J_Q_q_d__ﬁg_,l " 048 4

w 41 & 1P dne| r 4meR 4

|

If the test charge is unit charge (i.e. ¢ = 1), then work done on the test charge per umst
potential V, at the point P, due to charge 0,
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potential V, at the point 2, due to charge 0,

po@xl_ 0
“4meR  4meR

where V= Electric potential at a point P due to charge 0.

Since Electric potential has magnitude without any direction, electric
potential is a scalar quantity and is usually called as the 'scalar potential’ Hence,
electric potential at a pointis defined as the work done on the test charge per unit
charge inmoving a char ge frominfinity to the point. The unit of electric potential

is volt or joules per coulomb [.'1 volt = 1 Joule/coulomb. e

Incase there are two points which are separated by an small distance d, .
then the wotk done by an extemal force in moving an unit positive charge from Fig.33.
one point to the another i

W=V-(V+dv)=Eds
or dv=-F ds
But V isa function of x, y, z and hence 3.14 is written as
av & . &V . S

b‘



MW=V-(V+dV)=Eds

or dv=-Eds
ButV is a function of x, y, z and hence 3.14 i§ written as
AP 5V
axdr 6y azdz-- Eds
o BV
or [Bx By 52 Gs |(Gedt + Gydy + Gud2) =-Eds
or VV.ds = - E ds,
or | E=-VV=-(radV

Hence electric field intensity at any point is the negative of the potential gradient at that poiné
the direction of the electric field is the direction in which the gradieny s greatest on Eqn. 3,1, Grad
gradient of V and may also be represented with V. the del operator or Nablaas VV.

3.6, ELECTRIC CHARGE DENSITY (p) AND CONTINUOUS DISTRIBUTION OF CHA
The electric charge density (p) is the ratio of mtal charge 0 ina volume V, to volume V' &



e dimensions of charge per unit volume and its unit in SI unit is the coulomo per cubi
3

ectric charge is continuously distributed throughout a region, then charge density at an
A Q in a small volume element A v divided by the volume, with the limit of this rati
arinks to zero around the point P or symbohcaliy,

A
Lim *2
p vV -0 Av

mimed here that the electric charge is continuously distributed but in fact it is not and is ass
rticles e.g. electrons or atoms which are separated by finite atomic distances. The
above is also sometimes called as volume charge density (py).

v, when the charge is distributed continuously over a surface, then the surface charge
s is defined as the charge per unit area and its unit is coulomb per square metre. Hen

= lim i
1 e AS—>0 As
mmed that charge is conunuously dlsmbuted over a surface.

- when the charge is continuously distributed along a length instead or a surface or v
charge density ( pr ) is used. This is defined as the charge per unit length and its

etre. Hence
AQ
I, = lim
p ﬂL — 0 AL




| 148 ANTENNA AND WAVE PROP

The negative sign indicates that the charge is attractive towards plate. Similarly there aie
problems which can be solved by image method.

13.29. POISSON’S EQUATION AND LAPLACE’S EQUATION
Besides divergence operator, there is another Laplacian (Laplah-ci-an) operator. Eqn. 3.711
between the flux density D and the charge density p that exist in the region.

Thus V-D=p
But D=¢F
V-(eE)=p

If the region is homogencous and isotropic, the diclectric const or permittivity € wil
quantity, and hence. '

e V-E=p ' ButE
-eV - (VV)y=p
or el pia P
€

This Eqn. is known as Poisson’s equation and is useful in vacuum tubes and gaseous
problems particularly.

The divergence of a gradient (the double operator ) is written as V2 (dcl square) and is ¢
Laplacian operator.

In free space when there is no charge (f.e. p = 0), above eqn. becomes
==z |




This Eqn. is known as Poisson’s equation and is useful in vacuum tubes and gaseous
problems particularly.

The divergence of a gradient (the double operator ) is writien as V2 (del squarc) and is ¢
Laplacian operator.

In free space when there is no charge (i.e. p = 0), above egn. becomes

VPV = ()

This eqn. is known as Laplace’s equation.
Expanding equation 3.174 in rectangular co-ordinate, we get,

v FV PV :
""—EJr 2+ 2:0
dx" dy 0z

Further when p = 0, then eqn. 3.74.

v D=
or AT o e
or V:E=10

Laplace’s eqn. 1s of grcat importance 1n electromagnetic theory. Eqgn. 3.174 1s special case
eqn. for charge frce regions but eqns. 3.175 and 3.176 are the altcrnative forms.

- = A S o . e e . e



Further when p = 0, then eqn. 3.74.

V-D=20
or V-eE=0
or V.E=0

Laplace’s cqn. is of great importance in electromagnetic theory. Eqn. 3.174 1s special case @
eqn. for charge free regions but eqns. 3.175 and 3.176 are the altcrnative forms.

3.30. CAPACITOR
A capacitor (also called as condenser formerly) is an electric device having two conductor,
by an insulator or dielectric medium. The capacitance of a capacitor is deflined as the ratio of the
-one of its conductors to the potential difference between them. Symbolically the capacitance of
is given by

C'= % Coulombs/volt or Farad

IfV = 1 volt. Q = 1coulomb. Then C = 1 Farad

Hence, capacitance of a capacitor is one Farad, if charge stored is one coulomb with,
difference of one volt. In 'pfﬂClicc lower value i.e. microfarad (i.e. 107 Farad) and micro-micrt
10 *2 Farad) or Pico-Farad is uscd as Farad is a larger capacitance.



Vector Magnetic
Potential
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4.13. BIOT-SAVARTS LAW - (AMIE]
This deals with the magnetic field of current carrying element. The magnetic flux densany

by a current element ( / dl ) at any point in space or in any medium where the magnetic field &
current element is governed by Biot-Savart’s Law.

Letthe aligning torque on an arbitrarily small perfectly mounted magnetic needle be mss
ihe field B produced by an incremental current carrying element of A I, shown in Fig. 21
measurement, it is found that the incremental B is a function of 7 ,Al, » and 0 and is given by

IAlsin®

AB:KT

where K is proportionality constant and = -EFE e

_ B
i 4

where LL is the penneablhty and its unit is that of inductance divided by length i.e. Henry/metre. '
permeability is given by 3

K = Mo,
where Ms= Permeability in vacuum = 4z x 10~ H/m
Hr = Relative permeability w.r.t. vacuum or free space.

Putting Egn. 4.45 into Egn. 4.44 and writing infinitesimals instead of mcrementa]s 2
fundamental relation as

KL Idl sin ©
4 7
The direction of dB is perpendicular to the page inward at the point P,

AR L




_ n Idl sin®©
il 4w o $2.
The direction of dB is perpendicular to the page inward at the point P.

In order to find the value of B at.a point P due to a current I in a long straight or cu
placed in the plane of page as illustrated in Fig. 4.16 it is assumed that the conductor is made ¢
segments of infinitesimal length dl, all connected in series. The total flux density B at the point |
sum of the contributions from all these elements and is expressed by the integral of Eqn. 4.47. B

NEEDLE PIVOT AXIS

MAGNETIC NEED
PERPEHDECULARLTED
PAGE

Fig. 4.15. Measurement of B produced by short
current-carrying element Al as a function of radius r, angle ®, Fig. 4.16. Calculation of flux density B at a

current I and length A L. currert | in a long conductor.
- -4t sin ©
B=[as =1 ] 5 dl
" W sin O di
or B = 7= _[ 2




ENETIC FIELD OF STEADY ELECTRIC CURRENTS 2861

= Flux density at P, in 7.

- Permeability of the medium.

= Current in conductor, A.

= Length of current element, in m.

- Distance from element 4! to P, in metre

- Angle measured clockwise from positive direction of current along d! to the direction of radit
vector r extending from dl to P.
ngatlon in Eqn. 4.48 is done over the entire length of the conductor Eqgns. 4.47 and 448 &
»f the Biot-Savart law.

WETIC FIELD OF A LINEAR CONDUCTOR OF INFINITE LENGTH
w=ometry of the infinite linear conductor and the field produced by it, a distance r from it,

pL.17.

e el T fennmmmntin v Aoncitul mear a



long SIraigri cunuucLur . _
-urrent ( /) is in the direction shown then the magnetic flux density B at a distance r frc
ard in 10 the page shown. From Fig. 4.17, APC,

% = sin ® or R=rsin 6 ... .4.49
-om the Fig. 4.18 which is redrawn from the Fig. 4.17 in the amplified form.
Arc
radius e
DE _ de

r
DE = dl sin ©

dl sin ©
r

dl sin 6 = r d6 ... 4.49
-y the Biot-Savart law eqn. 4.48, B atpoint P is given by

wil ™ sin 64!

=d®o

BZH-G 7 .. (4
il % rd 9

B=g Vi P [By Eqn. 4.49
_pd T d0

s T Wi . (4
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The mtegral:lon istakenbetween® = 0 to nforthe entire length of infinite conductor. On intey
after putting the value of Eqn. 4.49 (a), we get

_ ul (™ sin @ _ B B _ —ul g
B_41|:u R d9”4an: CDSB:E_4ER[_1_1]_+4ER[2]

pl i
B >R webre/m

I

where B = Magnetic flux density.
p = Permeability of the medium H/m.
I = Current in the conductor, in A.
R = Perpendicular distance in metre.

If the conductor is of finite length and making angles 8; and 6, at poth from their ends the
Eqn. 4.48, we will have

_wI 2 sin 6dl ul f
Bhﬁ-[al r2 4R SC0s°0

[-.- limit varies from 8; to 6> instead of!

B:ﬁ’—R[cosel-ws 9, ]

This is the expression of B for a finite length of linear conductor.
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4.25. MAGNETIC VECTOR POTENTIAL (P.U., B.E. EMT June/Dec. 1982, AMIE

The electric potential depends upon the charges which establishes the field. It is scalar
the field expressed in terms of gradient of the potential function, is not generally useful for di
magnetic field. Hence it is desirable to set up a magnetic potential the space derivative of which
B or H, as electric field was space derivative of V.

Now in magnetic case, source for producing a magnetic field is current element whereas
electric field it is charge. Since the charge (having magnitude only) is a scalar quantity and
electrostatic electric potential but in the magnetic case, the current element is having direction and n
both. Hence the potential in case of magnetic field must be a vector potential, the direction of
related to the direction of current element, the source of magnetic field. Let us denote this m
potential or usually called simply vector potential by a vector A, then it is possible to obtain B or
derivative of A, as E was obtained as space derivative of V.

Further since space operation of a vector quantity may be the divergence and the curl. Butd
of a vector is a scalar where as curl of a vector is a vector and hence curl operation is the only space
operation which can be accepted. Therefore, the vectors H or B may be derivable from a suitable

vector potential A through the relations. g

H=VxA | 1

or B=VxA ’

out of these two alternatives, the latter is more widely used. Thus |
B=VXxA

Now, in order to define A, of course, for homogeneous 1sntop:c media, the relation betw%
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_H =VXA
or B=VxA
out of these two alternatives, the latter is more widely used. Thus
B=VXxA

Now, in order to define A, of course, for homogeneous, isotopic media, the relation bet
element (7 d! ) source and the magnetic vector potential A, must be of the type.

=0 ﬂ

r

where £ = constant, yet to be determined :
But seeing the Biot-Savart law the definition of B — the definition of A for current elementd

E

guessed as | ‘

|
_ b (dl i
4 -4 (%) N

Hence the magnetic vector potential due to current flow in a entire circuit is obtained by 1
the vector potentials caused due to all current elements that comprise the circuit. Thus

_ [ (1
'[dA“Jfln\r]

(I1dl \
or A:j:‘u; TJ
\

- i - e



B=VxA

Now, in order to define A, of course, for homogeneous, isotopic media, the relation bet
element ( 7 dl ) source and the magnetic vector potential A, must be of the type.

aA = k [{-{ﬂ J
. r
where ¥ = constant, yet to be determined

But seeing the Biot-Savart law the definition of B — the definition of A for current element
guessed as "

_u (1dl 3
dA_4ﬂ: r .

Hence the magnetic vector potential due to current flow in a entire circuit is obtained by
the vector potentials caused due to all current elements that comprise the circuit. Thus

( 1dl -
Lili-ind |
(
. =12 (7) ;

where the integration is over the complete circuit in which the current / flows. As far as djrectim;
element is concerned, either / or di may be made a vector quantity i.e.

S Hdl pop AL ]
A“J4n r Y 4ax r *

L]

If the expression is generalized, when the current flow throughout a volume with current
then we have

1dl = Jdv ]




ent element it is rather cus tom

of filamentary current is con
4 as

ary, although not necessary, to use /dl i
stant. Hence on introducing Eqn. 4.86

_ U Jdv
nT '[v 4ntr

#5e expression for the vector potential can also be used in differential fo
miEs of Eqn. 4.84.

VB =VxVxA " AX(BXxC)=(A-
--:_HH}=?><(?><A}.:(?'A)V’—(V-V)A
W xH)=(V-4)V _-Vv24

L =(V-A)V _Vv2 4 . v VX H =

%er to determine a vector uniquely, its divergence and its curl at all poir
=on. 4.84 leavesthe V - A undertermined. Hence one can assume

V-A=20
VPA=_pdJd
= the differential eqn. for vector potential A and is similar to Poi




I V- A =~ - p,_-e?_l-

¢ = the differential eqn. for vector potential A and is similar to Poi
i

2 9° 9° 0*
Ll B = R,
H = Absolute Permeability of the medium.
£ Egn. 4.88 is expanded, then
FIVPAY) +ay (VPA)) +a, (V2 A,) = ~H (ax Jx + ay Jy +

9

V2 Ay = — J,
g VA, =—7,
VA = -,
smows that Eqns. 4.88 and 4.89, are having the same form as Poisson’s Eqn.
Vy=-_P
€

= Electrostatic potential and statisfies the Green’s solution as

1 d
v--Ll [ pav |

T 4re - [




S

- Electrostatic potential and statisfies the Green’s solution as

i dv
e dre jv Er_
ing Eqns. 4.88 and 3.173, we see |
V=A
p=d
1
h = e

he vector potential A satisfy Poission Eqn. and therefore it must satisfy ity
we can write the expression for A as
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il Jxdv
A= 2o b r
_ M [ Jyav
e 2 4 v r
i Jz dv
A’_41t“v r

or combining all the three vectorially, we get

A

J
v 41‘:[r]dv

The unit of A is wb/m? or Tesla (T ) because by putting A in the Eqn. 4.84 we get the B.

According to eqn. 4.92, the vector potential A at a point due to a current distribution is
ratio o /7 integrated over the volume occupied by the current distribution, where o is the c
each volume element dv and r is the distance from each volume element to the point P, where A
If the current distribution is known, the vector potential A can be found. Knowing A at
flux density B at that can be calculated by taking curl of A since
B=VxA
In rectangular co-ordinate the curl of A is given by eqn. 2.96

B dA;, 9JA4A, dA: JA;) dA, 9As
vx‘*‘“‘[ay = a:}*“f[az ™ ax)“““{ax s ay]

and A = Ara. + Aya, + A;a;.Also in cylindrical co-ordinate V x A is given by Eqn. 2.96 l

(V x Ay = | L34 _ 94| l
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B=VxA
In rectangular co-ordinate the curl of A is given by eqn. 2.96

9 A, aAJ,)Jra(an “"Ma[ﬂl _BA,J
Y z

VxA:ax(

dy 0z 0z BxJ dx 0y |
|
andA = A;ax + Aya, + A;a;. Also in cylindrical co-ordinate V x A is given by Eqn. 2.96 |
|
[104: 04 |
(vXA)’Fhr 00 az}
_[24, 94
S T az}

1 - dA,
(VxA),=-= [ (rip) - aq)}

L-—Lﬂ‘#u.. E P FES——

The use of vector potential method for finding the magnetic field due to a given ¢
convenience. On many problems of a more difficult nature the vector potential is indispensible.
for this is the simplicity in evalutating the integral in Eqn. 4.92. Evaluation of Eqn. 4.92 is 1
accomplished by evaluating separately in three rectangular coordinates.

The components By, By, B, of magnetic field B are, therefore, can be written W1M

Eqn. 2.96 in cartesian form as
B=VXxA



[104, 04,
(VXA)’”__r 0p az}
(9A, OJA
(VXA)= = q’:\
* 00 dz |
12 a4,
(VXA)z—r[ar (rAgp)—a‘p]

The use of vector potential method for finding the magnetic field due to a given ¢
convenience. On many problems of a more difficult nature the vector potential is indispensible.|
for this is the simplicity in evalutating the integral in Eqn. 4.92. Evaluation of Eqn. 4.92 is|
accomplished by evaluating separately in three rectangular coordinates.

The components By, By, B, of magnetic field B are, therefore, can be written with|
Eqn. 2.96 in cartesian form as |

B=VxA
or Bra,+Byay+ B, a;,=(V xXA) q
{ A [ '
i 8 aaAz : aaAJ,
e £ 9
B_"an_aAﬂ
Y| 9z o0x
\ J
(9A, 0A:)
S 0
W Y )
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2.16 SHORT ELECTRIC DIPOLE(ORHERTZIANEL POL

A linear antenna can be regarded as a large number of very mﬁmmnnallyslu'tod
connected in series (end to end) and hence it is important first to consider the rad
properties of such short conductors. A short linear conductor is so short that ¢
may be assumed to be constant throughout its length as shown in Fig. 2.18. Thi
of short linear conductor is known as “Short dipole” or “Hertzian dipole™, afy
German physicist Heinrich Hertz.

Definition. Hertzian dipole is a hypothetical antenna and is defined as a
isolated conductor carrying uniform alternating current.

End plate .

- '; 'y . +Q

Balanced i

(=) T L L I

Transmission line

I I Y o Q
(a) | (b)
Fig. 2.18. A short dipole and its equivalent




.. )
A physical equivalent of short dipole is shown in Fig. 2.18(b) in which two ends of
the dipole are represented by two spheres where charges are accumulated. If [ be the
current then it is related to charge as

[=== .(2.161)

The electrically short dipole is theoretically the simplest and the most important
structure. The term short dipole is commonly applied to any dipole no longer than
0.1A. A short dipole that does not havle a uniform current is known as Elemental

dipole and is generally shorter than i'(")“th A Elemental di_pdle are also known as

elementary dipole, elementary doublet and Hertzian dipole.

When the length of the short dipole is vanishingly small, t-hé term infinitesimal

dipole is used. If dL be the infinitesimally small length and I be the current, then
7 df is called as current element. o

Since [=[ sinot or I cOs Qf | | .(2.1620q)
Current element dL = I, dL sin of or I, dL cos ot .(2.162b)
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Since [=1[ simaf or Icos | -~ .(2.1620)
Current element JdL = I, dL sin ¢ or [ aL cos w (2.162b)

Initially, a short dipole is in neutral condition. When a current (flow of electric
charge) starts to flow in one direction, one half of the dipole acquires an excess charge
and the other half a deficit, thereby causing a potential difference (voltage) between the
two halvs of the dipole. When the current changes its direction this charge unbalance
will first be neutralized and then changed.

Thus, the oscillating current will result in an oscillating voltage as well or vice-
versa. If the current oscillation is sinusoidal, the voltage oscillation will also be
sinusoidal ond approximately 90° lagging the current in phase angle, ie., a short
dipole is capacitive in nature from current voltage relation point of view

As electric charge oscillates in such short dipoles, they may also be called as
oscillating electric'dipoles as against oscillating magnetic dipoles.



2,17 RETARDED VECTOR POTENTIAL

If the expression for vector potential is integrated, it follows that potential due to
various current elements are added up. Let the instantaneous current (/) in the elements
be a sinusoidal function of time as

=
[ =1, sinaf (2.162)

where [, = Maximum or peak current

[ = Instantaneous current i.e., current at any instant
and o = 2nf, the angular frequency.

The vector potential expression represents the superposition of potentials due to
various current elements (I o), at a distant point P at a distance of . If these are simply
added up, it means an assumption is made that these fleld effects which are superimposed
at time 1, all started from the current elements of the same value of current and time,



even though they have travelled different varying distances. In other words
of propagation has been ignored which is not correct. This would have been ca
provided the velocity of propagation would have been infinite which is 2

So, there is a necessity to introduce the concept of retardatzon or that the el
reaching a distant point P from a given element at an instant ¢ is due to a current w
~ which followed at an’ earlier time or that the current effective in producing a fk

earlier time. This time, of course, depends on the distance travelled from (dL) o £
~ other words finite time of propagation (or retardation time as used by Lorentz) mwsy
taken to account. Thus, the mstantaneous current given by Eqn. (2 162) IS mnﬂ
now as

(] - _'Ioj'sin W (t — 9 | . _(z_u
where r = distance travelled; ¢ = velocity of propagation. | | |
[/] = Retarded current and the braCket is added to indicate that it is retasd

current

) |
(‘ "_—) = Retarded time as phase of the wave at point P is retarded with respe
“to the phase of the current in the element by an angle (@ r/c).



- This equation (2.163) implies that the disturbance at time ¢ at the distance 7 (po

P) from the element is caused by a retarded current [/] that occured at an earlier ti

(¢t —r/c). The time difference by an amount (r/c) is the interval needed by the disturban

to travel the distance » at the velocity at whlch electromagnetic wave travels i
velocuy of light c.

. Dis:,tant—- P

[y »
dl
Y
Fig. 2.19. A current carrying element
A 27T ®
> B= A
. s . _
sin 0)(1‘ — —') = sin (¢ — Br) --(2.16
c .

Thus, using Eqn. (2.164), equation for retarded current [/}, retarded current demsi
[:i) ] in exponential forms can respectively be written as



j(o(!--ﬂ

o/

o
-
¢

- = o
[J]=Joej[

—> _

= I, e/ @ =B Amp. ..(2.1654)
% .

= Jg e/ @ =B Amp/m? ...(2.1654)

Accordingly the expressions for magnetic vector potential

—>
A when introduced

with above eqns. we get “Retarded vector potential” which is applicable in time
varying conditions where distances travelled are significant in terms of wavelength.

Hence,
(3] 3
— 7! = H J
= d A =— [ff 2
(Al= [ e A ] S
=2 ieli=-r]
[K] = f{_f Jo _f"’(’ 6') av| (exponential form) ...(2.166a)
v 1
i)
o [ —— .
or [K] = _H I ¢ dv (In general) d2.1665)
- 4n Y, r




For sinusoidal current elemént, the retarded vector potential is given by

— _
| J(:-ﬁ)
H c/

— - | > =
[A]= ds.dl cdv=ds .dl
47 r

oS -
where dfs is cross-section area and d/ the length /= J- J.ds

?(I-EJ | Isinco(t—-i)
H c/ = por? c/ 2

= = dl
4n r 41 4n -[ r
+(2.167)
Similarly, scalar potentlal into the form of retarded scalar potentlal is written as
[p] |
[V] = ame _[ | ...(2.168a)
] p ejm(’ - ciJ
or [V] = J' 0 dv (2.168b)
47g J,. r
where [V'] = Retarded scalar potential ¥ in volts.

Pl =Py e’ (‘“-) = Retarded charge density, cm™.



