COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

TM accepting a language

TM ACCEPTING A LANGUAGE

Definition

Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and $w \in \Sigma^*$.

T accepts w if $(s, \varepsilon, \Delta, w) \mid -T^*(h, \varepsilon, \Delta, 1)$.

The language accepted by a TM T, denoted by L(T), is the set of strings accepted by T.

EXAMPLE OF LANGUAGE ACCEPTED BY A TM

$$L(T) = \{ O^n 1 O^n / n \ge 0 \}$$

- T halts on $O^n 10^n$
- T hangs on $O^{n+1}1O^n$ at p3
- T hangs on $O^n 1 O^{n+1}$ at q1
- T hangs on $O^n 1^2 O^n$ at q1

TM COMPUTING A FUNCTION

Definition

Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and f be a function from Σ^* to Γ^* .

T computes f if, for any string w in Σ^* ,

 $(s, \varepsilon, \Delta, w) \mid -T^*(h, \varepsilon, \Delta, f(w)).$

EXAMPLE OF TM COMPUTING FUNCTION

EXAMPLE OF TM COMPUTING FUNCTION

COMPOSITE TM

- $\circ T1 \rightarrow T2$ means executing T1 until T1 halts and then executing T2.
- $T1 \xrightarrow{a} \to T2$ means executing T1 until T1 halts and if the symbol under the tape head when T1 halts is a then executing T2.

EXAMPLE OF COMPOSITE TM

NONDETERMINISTIC TM

- •An NTM starts working and stops working in the same way as a DTM.
- Each move of an NTM can be nondeterministic.

EACH MOVE IN AN NTM

- reads the symbol under its tape head
- According to the transition relation on the symbol read from the tape and its current state, the TM choose one move nondeterministically to:
 - write a symbol on the tape
 - move its tape head to the left or right one cell or not
 - changes its state to the next state

HOW TO DEFINE NONDETERMINISTIC TM (NTM)

- \bullet a quintuple $(Q, \Sigma, \Gamma, \delta, s)$, where
 - the set of states Q is finite, and does not contain halt state h,
 - the input alphabet Σ is a finite set of symbols, not including the blank symbol Δ ,
 - the tape alphabet Γ is a finite set of symbols containing Σ , but not including the blank symbol Δ ,
 - the start state s is in Q, and
 - the transition fⁿ

CONFIGURATION OF AN NTM

Definition

• Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be an TM.

A configuration of T is an element of $Q \times$

$$\Gamma^* \times \Gamma \times \Gamma^*$$

Can be written as string to the left of tape head

- = (q,l,a,l)
- $(q, l \cdot \underline{a} \cdot r)$

symbol under tape head

string to the right of tape head

YIELD THE NEXT CONFIGURATION

Definition

• Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be an NTM, and $(q_1, \alpha_1 \underline{a_1} \beta_1)$ and $(q_2, \alpha_2 \underline{a_2} \beta_2)$ be two configurations of T.

We say $(q_1, \alpha_1 \underline{a_1} \beta_1)$ yields $(q_2, \alpha_2 \underline{a_2} \beta_2)$ in one step, denoted by $(q_1, \alpha_1 \underline{a_1} \beta_1) \vdash^T (q_2, \alpha_2 \underline{a_2} \beta_2)$, if

- $(q_2,a_2,S) \in \delta(q_1, a_1), \alpha_1 = \alpha_2 \text{ and } \beta_1 = \beta_2,$
- $(q_2,b,R) \in \delta(q_1, a_1), \alpha_2 = \alpha_1 b \text{ and } \beta_1 = a_2 \beta_2,$

NTM ACCEPTING A LANGUAGE/COMPUTING A FUNCTION

Definition

Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be an NTM.

Let $w \in \Sigma^*$ and f be a function from Σ^* to Γ^* .

T accepts w if $(s, \varepsilon, \Delta, w) \mid -T^*(h, \varepsilon, \Delta, 1)$.

The language accepted by a TM T, denoted by L(T), is the set of strings accepted by T.

T computes *f* if, for any string w in Σ^* , (*s*, ε , Δ , *w*) $|-_T^*(h, \varepsilon, \Delta, f(w))$.

EXAMPLE OF NTM

• Let $L = \{ ww | w \in \{0,1\}^* \}$

