COURSE:
THEORY OF

AUTOMATA
COMPUTATION

TOPICS TO BE COVERED

® Pushdown Automata and Context-Free Languages

NPDAS

« ANPDA (Nondeterministic PushDown Automata) is a 7-tuple
M=(Q,xTI, o,s, L, F)where
Q is a finite set (the states)
> is a finite set (the input alphabet)
" is a finite set (the stack alphabet)
O0c (QAx (Z U{e})xTI) x (QxTI™)is the transition relation
s € Q is the start state
1 e I' is the initial stack symbol
F — Qis the final or accept states

 ((p,a,A),(q,B,B,...B,)) € 6 means that

whenever the machine is in state p reading input symbol a on the input tape and A
on the top of the stack, it pops A off the stack, push B;B,...B, onto the stack (B,
first and B, last), move its read head right one cell past the one storing a and
enter state q.

((p,¢,A),(q,BB,...B,)) € 6 means similar to ((p,a,A),(q,BB,...B,)) <

O except that it need not scan and consume any input symbol.

CONFIGURATIONS

® Collection of information used to record the

snapshot of an executing NPDA

® an element of Q x X* x I'*.

@ Configuration C = (q, X, w) means
the machine is at state q,

the rest unread input string is X,

the stack content is w.

© Exampld. thé dorFisumatiol (g,

might describe

the situation:

LY

%}

P

1O > | og|>

ABAC1)

START CONFIGURATION AND THE
NEXT CONFIGURATION RELATIONS

« Given a NPDA M and an input string x, the configuration (s,
X, 1) is called the start configuration of NPDA on x.

o CFy =40¢ Q X Z* x T is the set of all possible configurations
for a NPDA M.

« One-step computation (-->,) of a NPDA:

(p) ay, AB) TIM (q) Y,V B) for each ((paa)A)a (CI, Y)) € 0. (1)

(p’ Y, AB) M (CI, Y, ¥ B) for each ((p’S:A))(qa Y)) €90. (2)
Let the next configuration relation -->, on CF,? be the set of
pairs of configurations satisfying (1) and (2).

-->. describes how the machine can move from one
configuration to another in one step. (i.e., C -->, D iff D can
be reached from C by executing one instruction)

Note: NPDA is nondeterministic in the sense that for each C
there may exist multiple D’s s.t. C -->,, D.

MULTI-STEP COMPUTATIONS AND
ACCEPTANCE

» Given a next configuration relation -->:

Define --->", and --->*, as usual, i.e.,
C -->9, D iff C=D.
C -->m1,iff 3EC-->", E and E-->, D.
C-->*yD iff In>0C-->"y D.
i.e., --->*, is the ref. and trans. closure of --> ,, .

« Acceptance: When will we say that an input string x is accepted
by an NPDA M?

two possible answers:
1. by final states: M accepts x (by final state) iff
(s,x, L) -->*, (p,e, o) for some final state p € F.
2. by empty stack: M accepts x by empty stack iff
(s,x, L) -->* (p,e, ¢€) for any state p.
Remark: both kinds of acceptance have the same expressive power.

LANGUAGE ACCEPTED BY A NPDAS

M= (Q,2I,9,s,,F) : a NPDA.
The languages accepted by M is defined as follows:

1. accepted by final state:

L:(M) = {X | M accepts x by final state}
2. accepted by empty stack:

L.(M) = {x | M accepts x by empty stackj}.
3. Note: Depending on the context, we may
sometimes use L; and sometimes use L, as the official
definition of the language accepted by a NPDA. l.e.,
if there is no worry of confusion, we use L(M) instead
of L.(M) or L{(M) to denote the language accepted by
M.

4. In general L (M) = L{(M).

SOME EXAMPLE NPDAS

Ex 23.1 : M;: ANPDA accepting the set of balanced strings of parentheses
[] by empty stack.
M, requires only one state q and behaves as follows:
1. while input is ‘[* : push ‘[* onto the stack ;
2. while input is ‘]’ and top is ‘[’ : pop
3. while input is ‘¢’ and top is L : pop.
Formal definition: Q={q}, Z={[,L13, T ={[, L},
start state = q, initial stack symbol = 1.

8 ={ ((q)[) J—)) (q) [J—))’ ((q?[) [)) (q) [[))’ // 1
((@,1, D), (@,¢)), //2
((qe, 1), (q,€)) } /73
Transition Diagram representation of the program ¢ :

((p,aA), (q,B;..B,))e & =>
« This machine is not deterministic. Why ?

‘ a,AlB,...B, \‘

EXAMPLE : EXECUTION SEQUENCES OF
M1

o letinput x = [J\] 1[11[]. Then below is a successful
computation of M, on x:

. a, [TLITL1111, 1) : the start configuration
-->v(q, [[11L01]T1] ' instruction or transition

- - -

-

- -

-

P N N N W= W= W= W)

T T T T T T T T =

T T T TR T T T TR
' V. V V V V V V V Vv~

\%
=

g,
ac

cepts by empty,stack

LTI

transition (ii)

transition (ii)
transition (iii)
transition (iii)
transition (ii)
transition (iii)
transition (iii)
transition (i)
transition (iii)
transition (iv)

FAILURE COMPUTATION OF M1 ON X

« Note besides the above successful computation, there are other
computations that fail.

Ex: (@, [[[11[1111, 1) : the start configuration
">*M (q) []’ J—)
-->u(q, [,) transition (iv)
a dead state at which the input is nhot empty and we
cannot move further ==> failure!!

Note: For a NPDA to accept a string x, we need only one successful
computation (i.e., 3 D = (_, ¢, €) with empty input and stack s.t.
(s,x,1) -->*, D.)

e Theorem 1: String x e {[,]}* is balanced iff it is accepted by M,
by empty stack.

» Definitions:

A string x is said to be pre-balanced if L(y) > R(y) for all prefixes y of
X.

A configuration (q, z, a) is said to be blocked if the pda M cannot

use up input z, i.e., there is no state r and stack B such that (q, z, o)
2" (, &, B).

» Facts:

1. If initial configuration (s, z, 1) is blocked then z is not accepted
by M.

2. If (g, z, o) is blocked then (q, zw, o) is blocked for all w € X*.

Pf: 1. If (s, z, L) is blocked, then there is no state p, stack p such that (s, z, 1) -->*
(p, €, B), and hence z Is not accepted.

2. Assume (g, zw, a) is not blocked, then there must exists intermediate cfg (p,
w, o) such that (q, zw, o) 2= (p, W, a') =2* (1, &, B). But (q, zw, a) =2* (p, W, o)
implies (q, z, o) 2* (p, €, a") and (q, z, a) is nhot blocked.

® Lemma 1: For all strings z,Xx,
if z is prebalanced then (q, zx,1)-->* (q,X, ol) iff a = [L@R@ ;
if z is not prebalanced, (q, z, 1) is blocked.
Pf: By induction on z.
basic case: z = ¢. Then (q, zx,1) = (q, X,.L) 2% (q,x, al) iff a = [F@RE@) |
inductive case: z = ya, whereais [or 7]
case 1: z=y]I.

If v is prebalanced, then so is z. By ind. hyp. (q, zx, L) = (q,y[, L) -->* (q, [X,
[LORW) |) -=>(q, X, [[LVRO)L) =(q, X, [{@R@ [),

If v is not prebalanced, then, by ind. hyp., (q, y, 1) is blocked and hence (q,
y[, 1) is blocked as well.

case 2: z=yl].

If v is not prebalanced, then neither is z. By ind. hyp. (q, vy, L) is blocked,
hence (q, y], 1) is blocked

If v is prebalanced and L(y) = R(y). Then z is not prebalanced.

By ind. hyp., if (q, y],L)-->* (q,], aL) then a = [F®R@) = ¢ but then (q,],L) is
blocked. Hence (q, z,1) is blocked.

Finally, if y is prebalanced and L(y) > R(y). Then z is prebalanced, and
(9,YIx,L)-->* (q,]x, [{W’® L) ---ind. hyp
> (G X, [OROL) - (i)
= (q, X, [H9R@L1)
On the other hand, if
(q,ylx,1)-->* (q,Xx, aL) .Then there must exist a cfg (q,]x, B) such that
(q,y]X,J_)">* (q:]X’ B) -->* (C|,X, ol)
But then the intructions executed in the last part must be IV* lIl IV*.

If (q’]X) B) T2V IV (q,X; al), then B = J—m[J— Yol . But by ind. hyp) B — [L(y)-
R¥) 1, hencem=0,n=0and a=[t"RW1 |

Pf [of theorem 1] : Let x be any string.

If x is balanced, then it is prebalanced and L(x) - R(x) = 0. Hence, by lemma 1,
(q, xg,L)-->*(q, &, [°L) --> v (q, &, €). As aresult, x is accepted.

If x is not balanced, it is not prebalanced. Hence, by lemma 1, (q, X, L) is
blocked and is not accepted.

ANOTHER EXAMPLE

« The set {ww | w € {a,b}*} is known to be not
Context-free but its complement

L, = {a,b} - {ww | w e {a,b}*} is.
Exercise: Design a NPDA to accept L, by empty stack.

Hint: x € L, iff
(1) |x]| is odd or
(2) x =vyazybz’ or ybzyaz’ for some vy,z,z’ € {a,b}*
with |z|=|Z"|, which also means

X = yay’ubu’ or yby’uau’ for some y,y’,u,u’ €
{a,b}”
with [y[=]y’| and |u|=|u’].

=WYIVALRRIN] LA NIV T VIV RIN I
. RQT(EIZ-I}YE?SESF)OE gb(i\CEPTANCE
Let u, t : two new states ¢ Q and
¢ . a new stack symbol ¢ T.
® Define a new PDAM’ = (Q’,%X,I",08’,s’, ¢, F’) where
Q=QU{u,t}, T"=TU{e}, s’=u, F’ ={t}and
6o’=06U {(ue, ¢)-->(s, Le) } // push Land call M
U{(f,e A)->(t,A) | fe FandA eI’} /* return to W’
after reaching final states */
U {(t, ¢,A) --> (t,e) | Ae I"” } // pop until EmptyStack
@ Diagram form relating M and M’: see next slide.
Theorem: L{(M) = L, (M’)
pf: M accepts x => (s, x, L) -->", (q, e, y) forsomeqeF

=> (U, X, &) -->p (S, X, L&) -->" (G, 8, 7¢) > (L e, 7

‘)
-->* (t,e, €) => M’ accepts x by empty stack.

*. push 1 and call M
+: return to t of M’ once reaching final states of M

++: pop all stack symbols until emptystack

FROM FINALSTATE TO EMPTYSTACK

Conversely, M’ accepts x by empty stack
=> (li) X, ¢) UMW (S’ X, 1e) ">*M’ (q’ Y, ¥ ‘) --> (t) Y, y‘)

-->
(t,e,e) forsomeqeF

— Yy = ¢ since M’ cannot consume any input symbol after it
enters state t. => M accepts x by final state.

@ Define next new PDAM” = (Q’,X,I"’,8”,s’, ¢, F’) where
Q=QU{u,t}, I’'=TU{e}, s"=u, F ={t}and
07=06U {(ue, ¢)-->(s, Le) } // push L and call M

U{ (p,s,¢)->(t,e) | peQ }/* returnto M’ and accept
if EmptyStack */

@ Diagram form relating M and M”: See slide 15.

FROM EMPTYSTACK TO FINALSTATE

® Theorem: L (M) = L{(M”).
pf: M accepts x => (s, x, L) -->" (q, €, €)

=> (u) X; ¢) -->M” (S) X) 1e) -->nM” (q’ €, 8 ‘) -->M” (t’
€, €)
=> M” accepts x by final state (and empty stack).

Conversely, M accepts x by final state (and empty stack)

=>f (U, X, &) MY (S, X, Le) ">*M” (q, Y, ‘) TTM (t’ €, &)
or

some state qin Q

=>y =g [and STACK= ¢] since M’ does not consume any
input symbol at the last transition ((q, €, ¢), (t, €))

=> M accepts x by empty stack.
QED

FROM EMPTYSTACK TO FINAL STATE
(AND EMPTYSTACK)

*: push 1L and call M

+: If emptystack (i.e.see & on stack) ,
then pop ¢ and return to state t of M”

EQUIVALENCE OF PDAS AND CFGS

@ Every CFL can be accepted by a PDA.

@G = (N, 2 ,PS) : a CFG.
wlog assume all productions of G are of the form:
A ->cB,B,B;..B, (k=0) and c € £ U {¢}.
note: 1. A -> g satisfies such constraint; 2. can require k< 2.

@ Define a PDAM = ({q}, £, N, 9, q, S, {}) from G where
q is the only state (hence also the start state),
>, the set of terminal symbols of G, is the input alphabet of M,
N, the set of nonterminals of G, is the stack alphabet of M,
S, the start nonterminal of G, is the initial stack symbol of M,
{}is the set of final states. (hence M accepts by empty stack!!)
o=1{ ((g,¢c,A), (q, BB,...B,)) | A->cB,B,B;..B, € P}

. BS (C|,[,S)'>(C|,BS)
EXAMPI.£S (@, [,S) -->(q, B)
3.5-> [SB ==> 0 . (a,[,S)-->(q, SB)
4.S->[SBS aq,[,S)-->(q,SBYS)
5.B ->] (g,], B) --> (q, ¢)

® L(G) = the set of nonempty balanced parentheses.

® leftmost derivation v.s. computation sequence
(see next table)

St->* [[[11[1]1 <==>(q, [[[1IlI], S) -->*4 (q, &, &)

sentential form of left-

configuration of the pda

rule applied most derivation accepting x
S (@, s[)[[]] [11
3 [sB @l oo
4 [[SBS B @l U
2 [[[BBSB (q’[[E[BBSB])][]],
5 [[[1BSB (q,[[[]BSB)][]],
5 (r11se | @O
2 [[[1]1[BB (q,[[[]]Bé) 11
5 e | @0]
5 [T00110]] (@ LLL]

[1])

LEFTMOST DERIVATION V.S.
COMPUTATION SEQUENCE

Lemma 24.1: Forany z,y € £*, y e N*and A € N,
A I_">nG ZYy iff (q) ZY, A) ">nM (q) Y, Y)

Ex: St-->3 [[[BBSB <==>(q, [[[]I[I] , S) -->3 (q,]][1], BBSB)
pf: By ind. on n.

Basis: n=0.AL-->0. zy iff z=gandy=A
iff (q’ Zy, A) =(q, Y, Y) iff (q) ZY, A) ">OM (q,y,Y)
Ind. case: 1. (only-if part)
Suppose AL-->m1. zy and B -> ¢ was the last rule applied.
l.e., AL-->". uBa '-->; uc Ba =2zy with z=uc and y =pa.

Hence (q, ucy, A) -->", (q, cy, Ba) // by ind. hyp.

5 -=> M (q, Y, BO(,) // since ((q,C,B),(CI; B)) <

=izl 1 IVIW I I WERINFVAIL IWVIN Veddoe

COMPUTATION SEQUENCE (CONT’D)

2. (if-part) Suppose (q, zy, A) -->""y (q, ¥, v) and
((q,c,B),(q, B)) € & is the last transition executed. l.e.,

(q’ Zy, A) ">nM (g, Cy, BOL) M (q’ Y, BOL) with Y= BOL and z = uc
for some
u. But then

Al-->n. uBa // by ind. hyp.,
L.-> ucBa=zy //sincebydef.B->cpeP
Hence At-->"1.zy QED

Theorem 24.2: L(G) = L(M).

pf: x € L(G) iff S t-->*, x
iff (q) X, S) ">*M (q, €, 8)
iff x e L(M). QED

SIMULATING PDAS BY CFGS

Claim: Every language accepted by a PDA can be
generated by a CFG.
@ Proved in two steps:

1. Special case : Every PDA with only one state has an
equivalent CFG

2. general case: Every PDA has an equivalent CFG.

@ Corollary: Every PDA can be minimized to an
equivalent PDA with only one state.

pf: M : a
1. app
2. app

PDA with more than one state.
y step 2 to find an equivalent CFG G

y theorem 24.2 on G , we find an

equivalent PDA with only one state.

PDA WITH ONLY ONE STATE HAS AN EQUIVALENT CFG.

eM=({s}, X, T, 5, s, 1L, {}) : a PDA with only one state.
Define a CFG G = (T, X, P, 1) where
P={A->cB | ((g,¢c,A),(q,B) e 5}

Note: M ==> G is just the inverse of the
transformation :

G ==> M defined at slide 16.

Theorem: L(G) = L(M).

Pf: Same as the proof of Lemma 24.1 and Theorem
24.2.

SIMULATING GENERAL PDAS BY CFGS

® How to simulate arbitrary PDA by CFG ?
idea: encode all state/stack information in nonterminals !!

Wlog, assume M= (Q, X%, T, 9, s, L, {t}) be a PDA with only one
final state and M can empty its stack before it enters its final
state. (The general pda at slide 15 satisfies such constraint.)

Let N c QxI™* x Q. Elements of N are written as <pABCqg>.
Define a CFG G = (N, X, <sLt>, P) where
P={<pAr> > c<qB,B,..B, r>

|\MA), BiByBy) € 8.k>0, c e TU (e}, re Q}

U Rules for nonte ; B, ..B, >

| =4

RULES FOR <Q B, B, ...B, R>
W%I\Sv:nt <@B,...B, r > to simulate the computation process in
M:
(q) wy, E1E2_BkB) |'---|' (r; Y, B) iff <qB1'"Bkr> 2% W.

Hence: if k = 0. ie., <qB,B,...B,r> = <qer>, we should have
qgr> 2 ¢ if g =r and
<gr> hasnorule ifg=r.
If k > 1. Let BB,...B, = B,A, , then:
® <gByAyr > 2 X1eq <qBiUy> <ujA r>
2 Zy1eq Zuzeq <AB1Us> <U Byuy> <UyAgr>
2 ..
2 Zy1eq Zw2eq - <qByuy><uyByuy>..<uy (B U ><U A >

®
®
®
® = Zi1eQ Zu2eq <qB,u,><u,B,u,>...<u,_.B, r>

(p, ¢, A) --> (g, B;B,...B)

C X{Xo...
[C X{Xo...
P 9 g
p o A t2 3 ql
t2 C tl q ql 2 q2
tl J_ t q2
Bi1 Ouq
_t
We want to use <pAg> >* w to simulate k-1 | Bk tOIf_ 2
the computation: (p, wy, AB) 2% (q, Y, €B) 2| C
So, if (p,c,A) 2, (g, &) we have rules : t1| L |t

<p Ar>=->c<qar>forall statesr.

HOW TO DERIVE THE RULE <PAR> > C<QAR>?

How to derive rules for the nonterminal : <q o r>
@case 1: a = B,B,B;..B, (n > 0)
=><qar>=<qB,QB,QB;Q...QBr>
=><qoar>-><qB;q><qB;,qy> ..
<q .1 B,, r> for all states q,,q,,...,9 ,.1 In Q.
® case?: o = e.
gq=r =><qor>=<qer> - c.
q !=r => <q ¢ r > cannot derive any string.

Then <pAg> - c <qeg> = C.

SIMULATING PDAS BY CFG (CONT’D)

@ Note: Besides storing sate information on the nonterminals, G
simulate M by guessing nondeterministically what states M will
enter at certain future points in the computation, saving its
guesses on the sentential form, and then verifying later that
those guesses are correct.

Lemma 25.1: (p,x,B,B,...B,) -->", (q,¢,e) iff
1 q4,95,..-dx (=q) such that
<pB;g;><q;B,q,>...<qy.1Bq> 2" X. (¥)

Note: 1. when k =0 (*) is reduced to <pg> ->"; x
2. In particular, (p,x,B) -->", (q,&,¢) iff <pBg> -->"¢ x.
Pf: by ind. on n. Basis: n = 0.
LHS holds iff (x =¢, k=0, and p=q) iff RHS holds.

SIMULATING PDAS BY SINGLE-STATE PDAS
(CONT’D)
Inductive case:

(=>:) Suppose (p,X,B;B,...By) -->"1 (q,¢,e) and
((p,C,5/),(rC,C,...C.)) is the first instr. executed. l.e.,

(p,x,B,B,...By) -->4 (1, ¥, C,C,...C_B,...B,) -->", (q,¢,¢),
where x = cy.

By ind. hyp., 3 statesr,,....r,.1,(r,=qs), dy,... Q. With
<rCyr><r Cyry>.<r 1Cd><qsBygy><qi B> “27 y

Also by the definition of G:

<pB.q.> 2 c <r,C;ry><r,C,ry>...<r,C_qg,> is a rule of G.

Combining both, we get: -

<pBiqy> <q4ByqQp> -..<q 1By Q>

"6 € <rgCir<rCorp>e<r 4 Chae> <qBydy> w<q 1 Bygy>

Lon.cy (=Xx).

Suppose ><q, B, g L%””g
SIMEVATING RDAS:BY CEGs EaNT D) -
be the first rule applied. i.e., Then
<p By 94> <qy B; 93> ...<q 4 B,g>
"6 € <rg Gy > <ry Gyrp>es <r g Cge> <qq By 4> . <Gy B>
Dy (=x)
But then since, by (*), [(p, c, B1), (ry, C,C,...C.))] - (**) is an instr of
M,
(p,Xx,B;...B,) -->\ (ro, ¥, C,C,...C..B,...B,)) --- By (**)
>N (g9,8,€). --,byind. hyp. QED
Theorem 25.2 L(G) = L(M).
Pf: x € L(G) iff <slt> >*x
iff (s,x,L1) -->*, (t,e,e) ---- Lemma 25.1
iff x e L(M). QED

oL ={xe {[,]}* | xis a balanced string of [and]], i.e., #](x) =
EX6) and all “]]*“s must occur in pairs }

oEx: [JI[[11]leL but[][]]]€L.
@ L can be accepted by the PDA

M=(Q, %, T, 3, p, L,{t}), where

Q= {p)q)t}) 2= {[’]}’ I = {A) B: J—}a

and o is given as follows:
(P, [, 1) --> (p, AL),

p,[,A) --> (p,AA),

P, I, A) --> (q, ¢),

g,]) B) ok (p) 8))
P&, J—) 2 (t)g)

(
(
(
(

® M can be simulated by the CFG G = (N,X, <pLt>, P)
where
N={<XDY>| XY €{p,q,t} and D € { A,B, L} },
and P is derived from the following pseudo rules :
(p’ :’ J—) ae (p) AJ—) . <p L2>-> [<pAJ-‘7>
(p’[)A) ake (p:AA) : <pA?1> 2 [<pA?2A?1>
(p) :) A) "z (q1 B)) : <pA?> 2] <C|B?>
This produce 3 rules (? =porqort).
(g, :a B) --> (P, €), <(B?> -] <pe?>
This produces 1 rule :
(? =p, but could not be q or t why ?)
<qB?> >]<pe? =><qBp> >] <pep> >0]
(p,e, L) --> (t,e) : <pLl?> > <te?>
This results in <pLt> 2> ¢ (since <tet> > ¢.)

<pL?>>[<pAL?> =>» resultingin 3rules:?=p, qort.
<pLp>—=>[<pAlp> ---(1)
<pLlg>—>[<pAlg> ---(2)
<p Lt> > [<pAlt> ---(3)

(1)~(3) each again need to be expanded into 3 rules.
<pALlp> > <pA?><? 1 p> where?isp or qort.
<pALg> > <pA?><? 1L g> where ?isp or qort.
<pALt> > <pA?><? L t>where?isporqort.

<pA?>->[<pA?,A?> resulting in 9 rules:

Where ?, = p,q, or t.
<pAp>—>[<pA?> <2, 1p> ---(1)

<PAQ> > [<pA%> <hlg> ---(2)
<pAt> 2> [<pA?> <2, 1t> ---(3)

