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TOPICS TO BE COVERED

® The Myhill-Nerode Theorem




ISOMORPHISM OF DFAS

= (Qu,Z,0m,SmsFm)s N =(Qy,S, Oy,Sn,Frn): two DFAs
o M and N are said to be isomorphic if there is a (structure-
preserving) bijection f:Q,-> Qy s.t.
f(sm) = sn
f(5u(p,a)) = 5y(f(p),a) forallp € Qy,a e X
p € F,, iff f(p) € Fy.
e l.e., Mand N are essentially the same machine up to renaming of

states.

» Facts:
1. Isomorphic DFAs accept the same set.
2. if Mand N are any two DFAs w/o inaccessible states accepting the same

set, then the quotient automata M/~ and N/ ~ are isomorphic

3. The DFA obtained by the minimization algorithm (lec. 14) is the minimal
DFA for the set it accepts, and this DFA is unique up to isomorphism.



MYHILL-NERODE RELATIONS

« R: aregular set, M=(Q, %, 9,s,F): a DFAfor Rw/o
inaccessible states.
« M induces an equivalence relation =, on £* defined by
X =, Yiff A(s,X) =A (s,Y).
i.e., two strings x and y are equivalent iff it is
indistinguishable by running M on them (i.e., by running M
with x and y as input, respectively, from the initial state of M.)
e Properties of =, :
0. =, is an equivalence relation on X*.
(cf: =~ is an equivalence relation on states)
1. = is a right congruence relation on X*: i.e., for any x,y €
Y*andae X, x=,Yy=>xa=, Ya.
pf: if x=,y=>A(s,xa) = 5(A (s,X),a) = &(A (s,Y),a) = A(s, ya)
=> Xxa =, ya.



PROPERTIES OF THE MYHILL-NERODE RELATIONS

® Properties of =, :
2. =, refines R. l.e., for any x,y € X%,
X=,y=>xeRiffy eR
pf: x € R iff A(s,x) € Fiff A(s,y) € Fiffy € R,
Property 2 means that every =,,-class has either all its elements in
R or none of its elements in R. Hence R is a union of some = -

classes.

3. It is of finite index, i.e., it has only finitely many equivalence
classes. 3 R

(i.e., the set { [X]=,, | x € £*}

is finite. \/

pf: x =, y iff A(s,X) = A(s,y) = ¢ ~

for some g € Q. Since there
are only | Q| states, hence 7
¥* has |Q| =y-classes \

T
| =y-Classes




DEFINITION OF THE MYHILL-NERODE
RELATION

» = an equivalence relation on X*,
R: a language over X*.

- =1is called an Myhill-Nerode relation for R if it
satisfies property 1~3. i.e., it is a right congruence of
finite index refining R.

« Fact: R is regular iff it has a Myhill-Nerode relation.
(to be proved later)

1. For any DFA M accepting R, =,, is a Myhill-Nerode
relation for R.

2. If =is a Myhill-Nerode relation for R then there is a DFA
M_ accepting R.

3. The constructions M — =, and = — M_ are inverse up to
isomorphism of automata. (\f.e. == =,_and M = M5



FROM = TO M=

« R: a language over %, = . a Myhill-Nerode relation for R;
the =-class of the string x is [X]_ =4¢{Y | X =V}.

Note: Although there are infinitely many strings, there are only
finitely many = -classes. (by property of finite index)

« Define DFA M= = (Q,X%,9,s,F) where
Q={[x] | xeZ¥, s=][g],
F={[x] | xe R} o([x],a) = [xa].
e Notes:

0: M_ has | Q| states, each corresponding to an = -class of =. Hence
the more classes = has, the more states M= has.

1. By right congruence of =, § is well-defined, since, if y,z €[x] =>
y=zZ=X=>ya=1za=Xa=>Ya, za € [xa]

2. x e Riff [x] e F.

pf: =>: by definition of M= ;

<=:[x] e F=>3Jys.t.y e Rand x=y => x € R. (property 2)



M — =, AND = —> M= ARE INVERSES

Lemma 15.1: A([x],Y) = [XxVY]
pf: Induction on |y|. Basis: A([x],e) = [X] =[xe].
Ind. step: A([x],ya) = 8(A([x],y),a) = &([xy],a) = [xya]. QED

Theorem 15.2: L(M_.) = R.
pf: x € L(M.) iff A([e],x) € Fiff [x] € Fiff x € R. QED

Lemma 15.3: = . a Myhill-Nerode relation for R, M: a DFA for R w/o
inaccessible states, then

1. if we apply the construction = — M_ to = and then apply M — =,
to the result, the resulting relation =, _ is identical to = .

2. if we apply the construction M —» =, to M and then apply = > M_
to the result, the resulting relation M=, is identical to M.



Pf: (of lemma 15.3) (1) Let M_ =(Q,%,9,s,F) be the DFA
constructed as described above. then for any x,y in X*,

x =y Y iff A([e], x) = A([e],y) iff [x] =[y] iff x=Yy.
(2) LetM = (Q, X ,5,s,F) and let M5, = (Q’, £, &’,5’,F’). Recall that
XI={y | y=ux}={y | A(s,y) = A(s,x) }
Q ={[x] I xeZf, s'=[e], FF={[x]|xeR}
o’ ([x], a) = [xa].
Now let f:Q’-> Q be defined by f([x]) = A(s,X).
1. By def., [x] = [y] iff A(s,X) = A(s,Y), so f is well-defined and 1-1.
Since M has no inaccessible state, f is onto.
2. f(s’) =1f([e]) =A(s,e) =5
3. [X] € F’ <=>x € R<=>A(s,X) € F <=>f([x]) € F.
4. £(6’([x],a)) = f([xa]) = A(s,xa) = 6(A(s,x),a) = 3(f([x]), a)
By 1~4, f is an isomorphism from M=, to M. QED



RELATIONS B/T DFAS AND MYHILL-
NERODE RELATIONS

Theorem 15.4: R: a regular set over X. Then up to isomorphism
of FAs, there is a 1-1 correspondence b/t DFAs w/o
inaccessible states accepting R and Myhill-Nerode relations for
R.

|.e., Different DFAs accepting R correspond to different Myhill-
Nerode relations for R, and vice versa.

We now show that there exists a coarsest Myhill-Neorde relation =g
for any R, which corresponds to the unique minimal DFA for R.

Def 16.1: =, , =, : two relations. If =, c =, (i.e., for all x,y, x
=, Yy => X =, y) we say =, refines =, .

Note:1. If =, and =, are equivalence relations, then =, refines
=, iff every = ,-class is included in a = ,-class.

2. The refinement relation on equivalence relations is a partial
order. (since c is ref, transitive and antisymmetric).



THE REFINEMENT RELATION

Note:
3.1f , =, c =, ,wesay =, is the finer and =, is the coarser
of the two refations.
4. The finest equivalence relation on a set U is the
identity relation I, = {(x,x) | x € U}

5. The coarsest equivalence relation on a set U is universal
relation U2 = {(x,y) | X, y € U}

Def. 16.1: R: a language over X (possibly not regular).
Define a relation =; over ~* by
X = y iff forallz € £* (xz € R <=>yz € R)

i.e., x and y are related iff whenever appending the same
string to both of them, the resulting two strings are either
both in R or both not in R.



PROPERTIES OF = ,

Lemma 16.2: Properties of =; :
0. =; is an equivalence relation over x*.
1. =; is right congruent
2. =, refines R.
3. = the coarsest of all relations satisfying 0,1 and 2.
[4. If R is regular => =; is of finite index. ]
Pf: (0) : trivial; (4) immediate from (3) and theorem 15.2.
(1) x=xy=>forall ze £* (xz € R<=>yz € R)
=>V aVw (xaw € R <=> yaw € R)
=> YV a (Xa=gYya)

(2) x=y => (x € R<=>y e R)
(3) Let = be any relation satisfying 0~2. Then
X=y=>Vzxz=Yyz ---byind. on |z| using property (1)

=>VZ (X2 e R<=>yz e R) ---by (2) =>x=; V.



MYHILL-NERODE THEOREM

Thorem16.3: Let R be any language over X. Then the
following statements are equivalent:

(a) R is regular;
(b) There exists a Myhill-Nerode relation for R;
(¢) the relation =; is of finite index.

pf: (a) =>(b) : Let M be any DFA for R. The construction
M — =,, produces a Myhill-Nerode relation for R.

(b) => (c): By lemma 16.2, any Myhill-Nerode
relation for R is of finite index and refines R => = 1S
of flmte mdex

(€) is of finite index, by lemma 16.2, it is
a My hlll Nerocfe relation for R, and the constructlon =
— M_ produce a DFA for R.



RELATIONS B/T = ; AND COLLAPSED
MACHINE

Note: 1. Since = ; is the coarsest Myhill-Nerode relation for a regular set
R, it $orresponds to the DFA for R with the fewest states among all
DFAs for R.

(i.e., let M =(Q,...) be any DFA for R and M = (Q’,...) the DFA induced by
=r, Where Q’ = the set of all = y-classes

==> |Q| = | the set of = ,-classes | >= | the set of =; -classes |
= Q.
Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed (i.e., M = M/=).
Then =, = =,, (hence M is the unique DFA for R with the fewest states).

pf: x=; yiff Vz € £* (xz € R<=>yz € R)
iff Vz e £* (A(s,xz) € F <=> A(s,yz) € F)
iff V z € ¥ (A(A(s,X),Z) € F <=> A(A(S,Y),z) € F)
iff A(s,x) = A(s,y) iff A(s,x) = A(s,y) -- since M is collapsed
iff x=,y Q.E.D.



AN APPLICATION OF THE MYHILL-
NERODE RELATION

« Can be used to determine whether a set R is
regular by determining the number of =; -classes.

« Ex: LetA={a"b" | n>0}.
If k # m => ak not =, a™, since akbke A but a™bk ¢ A ..
Hence =, is not of finite index => A is not regular.
In fact =, has the following =,-classes:
G ={a}, k>0
H ={a"b" | n>1}, k>0
E=>"-U,.,(GUH,)=%2*-{a™" | m>n=>0}



UNIQUENESS OF MINIMAL NFAS

® Problem: Does the conclusion that minimal DFA
accepting a language is unique apply to NFA as
well ?

Ans : ?



MINIMAL NFAS ARE NOT UNIQUE UP TO
ISOMORPHISM

© Example:letL={x1| x€{0,1} ¥

1. What is the minimum number k of states of all
FAs accepting L ?
Analysis : k # 1. Why ?

2. o f the following two 2-ftates FAs acce 1
1 =
)—() :




COLLAPSING NFAS

« Minimal NFAs are not unique up to isomorphism

« Part of the Myhill-Nerode theorem generalize to NFAs
based on the notion of bisimulation.

 Bisimulation:
Def: M=(Q,Z, du,Sm,Fn), N=(Qu,Z,0,5y,Fn): two NFAs,
: a binary relatlon from Q, to Q-

FongQN,deﬁneC() {pe Qy 13qeB p~q}
ForAc Q, define C_(A)={qeQ, |3PcA p=q}

Extend =~ to subsets of Q, and Q, as follows:
A~B<=>,. AcC(B)and B = C_(A)
iff Vpe AdgeBs.t.pqandVqeBdpeAs.t. p~=
g



C.(C.(A)




BISIMULATION

» Def B.1: A relation = is called a bisimulation if
1. S, ~ Sy
2. if p~qthen Va € X, §,(p,a) = dy(q,a)
3.if p~qthenp e F,iff q eFy.
« M and N are bisimilar if there exists a bisimulation between
them.

« For each NFA M, the bisimilar class of M is the family of all
NFAs that are bisimilar to M.

« Properties of bisimulaions:

1.Bisimulation is symmetric: if ~ is a bisimulation b/t M and N,
then its reverse {(q,p) | p~q} is a bisimulation b/t N and M.

2.Bisimulation is transitive: M~ Nand N~, P=>M=~,~, P

3.The union of any nonempty family of bisimulation b/t M and N is
a bisimulation b/t M and N.



PROPERTIES OF BISIMULATIONS

Pf 1 ,2: direct from the definition.

Letig E)l c |} bea nonempty indexed set of bisimulations b/t
M and efine’= =4 U._, =

Thus p ~ q means di € Ip~]q

1. Since | is not empty, S, =; Sy for some i € |, hence S, ~ S

2.1fp~q =>dielpx;qg => ou(P,a) = ; 8y(q, a) => ou(P,a) = 8y(q,a)

3.1fprq =>p=;qforsomei=>(pe FM<=>q e Fy)

Hence =~ is a bisimulation b/t M and N.

Lem B.3: =~ : a bisimulation b/t M and N. If A~ B, then for all x in ¥,

A(A,x) = A (B,X).

pf: by inductlon on |x|. Basis: 1. x =¢ => A(A,e) = A= B = A(B,¢).

2x : since Ac C_(B) 1fpeA—>3quw1thp g. => oy(p,a) <
g %a QCIAN(é ). => Ap(Aa) =U; 0y (P,a) < !

By a symmetrlc argument, Ay(B,a) < C_(Ay(A,a)).
So Ay (A,a) = Ay(B,a)).



BISIMILAR AUTOMATA ACCEPT THE
SAME SET.

3. Ind. case: assume Ay (A,Xx) = Ay(B,x). Then
An(A,xa) = Ay(An(A,X), a) = Ay(Ay(B,Xx),a) = Ay(B,xa). Q.E.D.

Theorem B.4: Bisimilar automata accept the same set.
Pf: assume ~ : a bisimulation b/t two NFAs M and N.
Since Sy, = Sy => Ay (Sp,X) = Ay (Sy,X) for all x.

Hence for all x, x € L(M) <=> Ay(Sy, X) N Fy = {3} <=>
ANS,X) N Fy= {3 <=>x e L(N). Q.E.D.

Def: ~ : a bisimulation b/t two NFAs M and N

The support of ~ in M is the states of M related by ~ to some
state of N, i.e., {p € Q, | p=q forsome q € Qy} = C(Qy).



AUTOBISIMULATION

Lem B.5: A state of M is in the support of all bisimulations
involving M iff it is accessible.

Pf: Let ~ be any bisimulation b/t M and another FA.
By def B.1(1), every start state of M is in the support of ~.

By B.1(2), if p is in the support of =, then every state in
o(p,a) is in the support of ~. It follows by induction that
every accessible state is in the support of ~.

Conversely, since the relation B.3 = {(p,p) | p is accessible}
is a bisimulation from M to M and all inaccessible states of
M are not in the support of B.3. It follows that no
Eac%essible state is in the support of all bisimulations.

.E.D.

Def. B.6: An autobisimulation is a bisimlation b/t an
automaton and itself.



PROPERTY OF AUTOBISIMULATIONS

Theorem B.7: Every NFA M has a coarsest autobisimulation =, ,
which is an equivalence relation.

Pf: let B be the set of all autobisimulations on M.

B is not empty since the identity relation |, = {(p,p) | pin Q }
is an autobisimulation.

1. let 5, be the union of all bisimualtions in B. By Lem B.2(3),
=\ Is also a bisimualtion on M and belongs to B. So =, is the
largest (i.e., coarsest) of all relations in B.

2. =, is ref. since for all state p (p,p) € Iy, < =y -
3. =, is sym. and tran. by Lem B.2(1,2).
4. By 2,3, =, is an equivalence relation on Q.



FIND MINIMAL NFA BISIMILAR TO A NFA

oM =(Q,2,5,5,F) : a NFA.

® Since accessible subautomaton of M is bisimilar to M under the
bisimulation B.3, we can assume wlog that M has no inaccessible
states.

® Let =be =,,, the maximal autobisimulation on M.

forpinQ, let [p] ={q | p =q } be the =-class of p, and

let « be the relation relating p to its =-class [p], i.e.,

« 2 Qx22%=4¢ {(p,[P]) I PINQ}

for each set of states A < Q, define [A] ={[p] | pin A}. Then

Lem B.8: For all A,B < Q,
1.Ac C_(B) iff [A] c [B], 2.A=Biff [A]=[B], 3.A«[A]

pf:1. Ac C_(B) <=>VpinAV qinBs.t. p=q <=>[A] c [B]
2. Direct from 1 and the fact that A=B iff Ac C_(B) and B < C_(A)

3.peA=>pe|[p] € [A], B € [A] => 3 p € Awith p « [p] = B.



MINIMAL NFA BISIMILAR TO AN NFA (CONT’D)

® Now define M’ ={Q’, S, d’, S’,F’} = M/= where
Q =[Q]={[p] I P @,
S"=[S]={lp] I peS}, F'=[F]={[p] | p e F}and

6’ ([p],a) = [6(p,a)],
Note that &’ is well-defined since

[P] = [q] => p=q => 5(p,a) = 5(q,a) => [5(p,a)] = [5(q,a)]
=> 8°([p],a) = 6°([g],a)
Lem B.9: The relation « is a bisimulation b/t M and M’.
pf: 1. By B.8(3): S [S] =5’.
2. If p«[q] => p=q=>3(p,a) =d(q,a)
=> [3(p,a)] = [3(q,a)] => &(p,a) « [8(p,a)] = [5(q,a)].
3.ifpe F=>][p] € [F] =F and
if [p] e F’=[F] =>3q e Fwith [q] =[p] =>p=q=>p eF.
By theorem B.4, M and M’ accept the same set.




AUTOBISIMULATION

Lem B.10: The only autobisimulation on M’ is the identity
relation =.

Pf: Let ~ be an autobisimulation of M’. By Lem B.2(1,2), the
relation « ~ » is a bisimulation from M to itself.

1. Now if there are [p] = [q] (hence not p = q ) with [p] ~ [q]

=>p«[p]~[q]>»gq=>p«~»Qq =>«~»g=, acontradiction !.
On the other hand, if [p] not~ [p] for some [p] => for any [q],
[p] not~ [q] (by 1. and the premise)

=>pnot («~»)qforanyq (p«[p] [q]>q)
=> p is not in the support of « ~ »

=> p is not accessible, a contradiction.




QUOTIENT AUTOMATA ARE MINIMAL
FAS

@ Theorem B11: M: an NFA w/t inaccessible states, = : maximal
autobisimulation on M. Then M’ = M /= is the minimal automata
bisimilar to to M and is unique up to isomorphism.

pf: N: any NFA bisimilar to M w/t inaccessible states.
N’ = N/ = where =, is the maximal autobisimulation on N.
=> M’ bisimiar to M bisimilar to N bisimiar to N’.
Let ~ be any bisimulation b/t M’ and N’.

Under =, every state p of M’ has at least on state g of N’ with p
q and every state g of N’ has exactly one state p of M’ with p
qg.

O/wp=q="1p’'#p=>~=-1is anon-identity autobisimulation

on M, a contradiciton!.

Hence ~is 1-1. Similarly, ~'is 1-1 => ~ is 1-1 and onto and hence
is an isomorphism b/t M’ and N’. Q.E.D.

~y

~y
~
"~



ALGORITHM FOR COMPUTING MAXIMAL
BISIMULATION

@ a generalization of that of Lec 14 for finding equivalent states of

DFAs
The algorithm: Find maximal bisimulation of two NFAs M and N
1. write down a table of all pairs (p,q) of states, initially
unmarked
2. mark (p,q) if p € F,y, and q ¢ F or vice versa.
3. repeat until no more change occur: if (p,q) is
unmarked and if for some a € %, either
dp’ € oy(p,a) s.t. V q’ € dy(q,a), (p’,q’) is marked, or
1q’ € dy(q,a) s.t. V p’ € dy(p,a), (p’,q’) is marked,
then mark (p,q).
4. define p = q iff (p,q) are never marked.
5. If S, =Sy => = is the maximal bisimulation
o/w M and N has no bisimulation.



