


 Conversion of NFA to DFA 

 Inaccessible states 

How to find all accessible states 

Minimization process 

 



 



Problems: 

1. Given a DFA M with k states, is it possible to find an 
equivalent DFA M’ (I.e., L(M) = L(M’)) with state 
number fewer than k ? 

2. Given a regular language A, how to find a machine 
with minimum number of states ? 

Ex: A = L((a+b)*aba(a+b)*) can be accepted by the 
following NFA: 

 

By applying the subset  

construction, we can construct 

a DFA M2 with 24=16 states, 

 of which only 6 are accessible from the initial state {s}. 

 

s t u v 

a b a 

a,b a,b 



 A state p  Q is said to be inaccessible (or unreachable) [from the 
initial state] if there exists no string x in S* s.t.  

   D(s,x) = p (I.e., p  {q | xS*, D(s,x) = q }. ) 

 

Theorem: Removing inaccessible states from a machine M does not 
affect the language it accepts. 

Pf:  M = <Q,S,d, s,F> : a DFA;      p : an inaccessible state 

 Let M’ =<Q \ {p}, S, d’, s, F\{p}> be the DFA M with p removed.  
Where d’:(Q\{p})xS  Q\{p}  is defined by  

 d’(q,a) = r if d (q, a) =r and q, rQ \{p}. 

 

For M and M’ it can be proved by induction on x that 

for all x in S*, D (s,x) = D’ (s,x). 

Hence for all x  S*, x  L(M) iff D(s,x) = q  F 

  iff D’(s,x) = q  F\{p} iff x  L(M').  



 M : any DFA with n inaccessible states p1,p2,…,pn. 

Let M1,M2,..,Mn+1 are DFAs s.t. DFA Mi+1 is constructed from 
Mi by removing pi from Mi . I.e., 

 M -rm(p1)-> M1 -rm(p2)-> M2 - …  Mn -rm(pn)-> Mn 

By previous lemma: L(M) = L(M1) = …=L(Mn) and 

                      Mn has no inaccessible states. 

 Conclusion: Removing all inaccessible sates 
simultaneously from a DFA will not affect the language it 
accepts. 

 In fact the conclusion holds for all NFAs we well.  

   Pf: left as an exercise.   

 

 Problem: Given a DFA (or NFA), how to find all inaccessible 
states ?  



 A state is said to be accessible if it is not inaccessible. 

Note: the set of accessible states  A(M)  of a NFA M is 

        {q|  xS*, q  D(S,x) }  

       and hence can be defined by induction. 

 Let Ak be the set of states accessible from initial states of M by 
at most k steps of transitions. 

   I.e., Ak = {q| xS* with |x|  k and q  D (S,x) } 

 What is the relationship b/t  A(M) and Aks ? 
 sol: A(M)  = Uk≥0 Ak. Moreover Ak Ak+1   

 What is A0 and the relationship b/t Ak and Ak+1 ? 

Formal definition: M=<Q,S,d, S,F> : any NFA. 
 Basis: Every start state q  S is accessible.(A0  A(M)) 

 Induction: If q is accessible and p in d (q,a) for some a S, then p is 
accessible. 

  (Ak+1=Ak U {p | p d(q,a) for some qAk and a  S.) 

 



 REACH(M) {   // M = <Q,S,d, S ,F> 

1. A = S;               // A = A0 

2. B = D (A) - A ;     // B = A1 – A0 

3. For k = 0 to |Q| do { // A = Ak ; B = AK+1 - Ak 

4.  A = A U B ;       // A = AK+1  

      B = D(B) - A;    // B = D(B)–A=D(AK+1–Ak)–AK+1=AK+2–Ak+1 ;  

      if B = {} then break  };  

5. Return(A)  } 

 

Function D(S) {     // =  UpS , aS, qd(p,a)  

1. D  = {}; 

2. For each q in Q do 

     for each a in S do 

       D = D  U d (q,a); 

3.  Return(D) }  
      

 

       

        



 Minimization process for a DFA: 
 1. Remove all inaccessible states 

 2. Merge all equivalent states 

 What does it mean that two states are equivalent? 
 both have the same observable behaviors .i.e., 

 there is no way to distinguish their difference. 

 Definition: we say state p and q are distinguishable if there 
exists a string xS* s.t. (D (p,x)F  D (q,x)  F). 
 If there is no such string, i.e.xS*(D(p,x)FD(q,x)F), we say p 

and q are equivalent (or indistinguishable).  

 Example[13.2]: (next slide) 
 state 3 and 4 are equivalent. 

 States 1 and 2 are equivalent. 

 Equivalents sates can be merged to form a simpler machine. 



0 

1 

2 4 

3 
a 

a 
a,b 

a,b a 
b 

b b 
5 

a,b 

0 5 

a,b 

1,2 3,4 
a,b a,b a,b 

Example 13.2: 



Example 13.2: Witness for states that are distinguishable 

2 3 

1 0 

5 4 

2 3 

1 0 

5 4 

1. States b/t {0,3,4} and {1,2,5} can be distinguishsed by the empt

y string e. 

2. States b/t {1,2} and {5} can be distinguished by a or b. 

3. States b/t {0} and {3,4} can be distinguished by aa,ab, ba or bb. 

4. There is no way to distinguish b/t 1 and 2, and b/t 3 and 4. 

2 3 

1 0 

5 4 



 M=(Q, S, d, s, F): a DFA. 

  : a relation on Q defined by: 
p  q <=> xS*  D(p,x)F  iff  D (q,x)  F 

 Property:   is an equivalence (i.e., reflexive, symmetric and 
transitive) relation. 

 Hence it partitions Q into equivalence classes : 

 [p] =def  {q  Q | p  q} for p  Q.   

Q/ =def {[p] | p  Q} is the quotient set. 

 Every p  Q belongs to exactly one class (which is [p] ) 

 p  q  iff [p]=[q]  //why? since p  q  implies pr iff qr. 

 Ex: From Ex 13.2, we have 0, 1  2, 3   4, 5. 

 => [0] = {0}, [1] = {1,2}, [2]={1,2}, [3]={3,4},[4]={3,4} and 

 [5] = {5}. As a result, [1] = [2] = {1,2}, [3]=[4]= {3,4} and 

 Q/ = { {0},{1,2},{3,4},{5}} = { [0],[1],[2],[3],[4],[5] } = {[0],[1],[3],[5] }. 



 Define a DFA called the quotient machine M/ = <Q’,S, d’,s’,F’> 
where 

 Q’=Q/ ;  s’=[s];   F’={[p] | p  F};  and 

 d’([p],a)=[d (p,a)] for all pQ and aS. But well-defined? 

Lem 13.5. if p  q then d (p,a)  d (q,a).  

   Hence [p]=[q]  pq  d(p,a)  d(q,a)  [d (p,a)] = [ d (q,a)] 

Pf: By def. [d (p,a)] = [d(q,a)]  iff d(p,a)  d (q,a)  

  iff ∀y∈S* D(d (p,a),y ) ∈ F  D(d (q,a),y) ∈ F 

 iff ∀ y ∈ S* D (p, ay) ∈ F  D (q,ay) ∈ F 

 if p  q.  

Lemma 13.6. p ∈ F iff [p] ∈ F’. 

pf: => : trival. 

  <=: need to show that if q  p and p ∈ F, then q ∈ F. 

 But this is trivial since p = D(p,e) ∈ F iff D (q, e) = q ∈ F 

 



Lemma 13.7: ∀ x ∈ S*, D’([p],x) = [D(p,x)]. 

 Pf: By induction on |x|.  

 Basis x = e: D’([p], e] = [p] = [D(p, e)]. 

 Ind. step: Assume D’([p],x) = [D(p,x)] and let a ∈ S. 

 D’([p],xa) = d’(D’(p,x),a) = d’([D(p,x)],a) --- ind. hyp. 

   =[d(D (p,x),a)]   -- def. of d’ 

   = [D (p,xa)].    -- def. of D. 

Theorem 13.8: L(M/ ) = L(M). 

Pf: ∀ x ∈ S*, 

 x ∈ L(M/)  iff D’(s’,x) ∈ F’ 

 iff D’([s],x) ∈ F’   iff [D(s,x)] ∈ F’ --- lem 13.7 

 iff  D (s,x) ∈ F   --- lem 13.6 

 iff  x ∈ L(M). 



 Theorem: ((M/) /  ) = M/  

Pf: Denote the second  by . I.e. 

 [p]  [q] iff ∀ x ∈ S*, D’([p],x) ∈ F’  D’([q],x) ∈ F’ 

 

Now  

[p]  [q]    

iff  ∀ x ∈ S*, D’([p],x) ∈ F’  D’([q],x) ∈ F’ -- def.of 

iff  ∀ x ∈ S*, [D(p,x)] ∈ F’  [D(q,x)] ∈ F’  -- lem 13.7 

iff  ∀ x ∈ S*, D (p,x) ∈ F  D (q,x) ∈ F     -- lem 13.6 

iff  p  q     -- def of  

iff  [p] = [q]    -- property of equivalence  



1. Write down a table of all pairs {p,q},  

      initially unmarked. 

2. mark {p,q} if p ∈ F and q ∉ F or vice versa. 

3. Repeat until no additional pairs marked: 

 3.1 if ∃ unmarked pair {p,q} s.t. {d(p,q), d(q,a) } is marked for 

some a ∈ S, then mark {p,q}. 

4. When done, p  q iff {p,q} is not marked. 

Let Mk ( k ≥ 0 ) be the set of pairs marked after the k-th 

iteration of step 3. [ and M0 is the set of pairs before step 3.] 

Notes: (1) M = Uk ≥0 Mk is the final set of pairs marked by the 

alg.   (2) The algorithm must terminate since there are 

totally only C(n,2) pairs and each iteration of step 3 must 

mark at least one pair for it to not terminate.. 

:x  

a 

a 

p 

q d (q,a) 

d(p,a) 

:ax  



 The DFA: (Ex 13.2) 

a b 

>0 1 2 

1F 3 4 

2F 4 3 

3 5 5 

4 5 5 

5F 5 5 



 

1 - 

2 - - 

3 - - - 

4 - - - - 

5 - - - - - 

0 1 2 3 4 



 

1 M 

2 M - 

3 - M M 

4 - M M - 

5 M - - M M 

0 1 2 3 4 



 

1 M 

2 M - 

3 - M M 

4 - M M - 

5 M M M M M 

0 1 2 3 4 



 The result : 1  2 and 3  4. 1 M 

2 M - 

3 M2 M M 

4 M2 M M - 

5 M M1 M1 M M 

0 1 2 3 4 



Let Mk ( k ≥ 0 ) be the set of pairs marked after the k-th itration of 
step 3. [ and M0 is the set of pairs befer step 3.] 

Lemma: {p,q} ∈ Mk iff ∃x∈S* of length ≤ k s.t. D(p,x) ∈ F and D(q,x) ∉ 
F or vice versa, 

Pf: By ind. on k.  Basis k = 0. trivial. 

 Ind. step: ∃ x ∈ S* of length ≤ k+1 s.t. D (p,x) ∈ F D (q,x) ∉ F, 

 iff  ∃ y ∈ S* of length ≤ k s.t. D (p,y) ∈ F D (q,y) ∉ F,  or 

    ∃ ay ∈ S* of length ≤ k+1 s.t. D(d (p,a),y) ∈ F D(d(q,a),y) ∉ F, 

 iff  {p , q} ∈ Mk or {d (p,a), d (q,a)} ∈ Mk for some a ∈ S. 

 iff  {p,q} ∈ Mk + 1. 

Theorem 14.3: The pair {p,q} is marked by the algorithm iff  not(p  
q) (i.e., ∃ x ∈ S* s.t. D (p,x) ∈ F  D (q,x) ∉ F) 

Pf: not(p  q) iff ∃ x∈S* s.t. D (p,x) ∈ F D (q,x) ∉ F  

  iff  {p,q}∈ Mk for some k ≥ 0  

  iff {p,q} ∈ M  =  Uk ≥ 0Mk. 


