COURSE:
THEORY OF

AUTOMATA
COMPUTATION

TOPICS TO BE COVERED

@ Conversion of NFA to DFA

® Inaccessible states

® How to find all accessible states
@ Minimization process

INTRODUCTION

MOTIVATIONS

Problems:

1. Given a DFA M with k states, is it possible to find an
equivalent DFA M’ (l.e., L(M) = L(M’)) with state
number fewer than k ?

2. Given a regular language A, how to find a machine
with minimum number of states ?

Ex: A= L((a+b)*aba(a+b)*) can be accepted by the ab

following NFA:
@b b Q

By applying the subset
construction, we can construct
a DFA M2 with 24=16 states,
of which only 6 are accessible from the initial state {s}.

- Astate p % IS said to be inaccessible (or unreachable) [from the
initial State] § therkl ekisfs idisiringx in 2* s.t.
A(S,X)=p (l.e.,, p ¢ {q | IxeZ*, A(S,X) =q }.)

Theorem: Removing inaccessible states from a machine M does not
affect the language it accepts.

Pf. M =<Q,X,5, s,F>:a DFA; p:aninaccessible state

Let M’ =<Q\ {p}, %, &’, s, F\{p}> be the DFA M with p removed.
Where 6’ : (Q\{p})xZ > Q\{p} is defined by

o'(g,a) =rifd6(q, a) =rand q, reQ \{p}.

For M and M’ it can be proved by induction on x that
for all x in £*, A (s,x) = A’ (s,X).
Hence forallx € £*, x e L(M) Iff A(s,x) =g € F

Iff A’(s,x) =g € F\{p} iff x € L(M").

INACCESSIBLE STATES ARE
REDUNDANT

- M :any DFA with n inaccessible states p;,p,,...,P,.

Let M;,M,,..,M,,, are DFAs s.t. DFA M, Is constructed from
M. by removing p; from M, l.e.,

M -rm(py)-> My -rm(p,)-> M, - ... M, -rm(p,)-> M,
By previous Iemma: L(M) = L(Ml) =...=L(M,) and
M, has no inaccessible states.

« Conclusion: Removing all inaccessible sates _
simultaneously from a DFA will not affect the language it
accepts.

« |n fact the conclusion holds for all NFAs we well.
Pf: left as an exercise.

« Problem: Given a DFA (or NFA), how to find all inaccessible
states ?

HOW TO FIND ALL ACCESSIBLE STATES

o A state Is said to be accessible if it is not inaccessible.
Note: the set of accessible states A(M) of a NFAM is
{gl 3 xeX* g e A(S,X) }
and hence can be defined by induction.

» Let A, be the set of states accessible from initial states of M by
at most k steps of transitions.
l.e., A, ={q|d xeZ* with [x| < kand g € A (S,X) }
« What is the relationship b/t A(M) and A,s ?
sol: A(M) = U,,q A.. Moreover A, cA,.;
- What is A, and the relationship b/t A, and A, ,; ?
Formal definition: M=<Q,,5, S,F> : any NFA.
Basis: Every start state q € S is accessible.(A, < A(M))

Induction: If g is accessible and p in 6 (g,a) for some a €%, then p Is
accessible.

(A=A U{p| pe d(g,a) forsome geA, and a € X.)

AN ALGORITHM TQ FIND ALL
ACTESSIB)ESTATES:

3.Fork=0to |Q|do {//A=A,;B=A,-A

4. A=AUB,; A= Ag.q
B=A(B)-A; [/IB=A(B)-A=A(Ak.—A)-Ak1=Ak Ak 5
if B = {} then break },

5. Return(A) }

Function A(S){ /= U, a5, q€d(p,a)
1.A ={}
2. ForeachqinQ do
foreach ain X do
A=A Ud(q,a);
3. Return(A) }

« Minimization }_i[ocess for a DFA:
i

MINEMIZATIAQN R OLESS

2. Merge all equivalent states

What does it mean that two states are equivalent?

both have the same observable behaviors .i.e.,

there is no way to distinguish their difference.
Definition: we say state p and g are distinguishable if there
exists a string xeX* s.t. (A (p,X)eF < A(q,x) ¢ F).

If there is no such string, I.e.VxeX*(A(p,X)eF<=A(Q,X)eF), we say p
and g are equivalent (or indistinguishable).

Example[13.2]: (next slide)
state 3 and 4 are equivalent.
States 1 and 2 are equivalent.

Equivalents sates can be merged to form a simpler machine.

Example 13.2:

Example 13.2: Witness for states that are distinguishable

v

1. States b/t {0,3,4} and {1,2,5} can be distinguishsed by the empt
y string .

2. States b/t {1,2} and {5} can be distinguished by a or b.

3. States b/t {0} and {3,4} can be distinguished by aa,ab, ba or bb.

4. There is no way to distinguish b/t 1 and 2, and b/t 3 and 4.

« M=(Q, %, 9, s, F): a DFA.
- 1a(khtiononh QGefined By CTION
P~ (Qg<=>VxeX* A(p,X)eF iff A(q,x) e F

« Property: = Is an equivalence (i.e., reflexive, symmetric and
transitive) relation.

« Hence it partitions Q into equivalence classes :
[P] =4er {0 € Q| p~q}forp e Q.
Q/= = {[p] | p € Q} Is the quotient set.
Every p € Q belongs to exactly one class (which is [p])
p =~ q Iff[p]=[q] //why? since p~ g implies p=r iff g=~r.
« Ex: From Ex 13.2, we have 0,1~ 2, 3~ 4, 5.
=>[0] ={0}, [1] = {1.2}, [2]={1.,2}, [3]={3,4},]4]={3,4} and
[5] = {5}. As aresult, [1] = [2] = {1,2}, [3]=[4]={3,4} and
Q/~ ={{0},{1,2},{3,4}1,{5}} = { [0].[1].[2].[3].[4].[5] } = {[O].[1].[3L.[5] }

» Define a DFA called the quotient machine M/~ = <Q’,%, §°,s,F'>

Whtke FUNCTION A’ IS WELL-DEFINED.
Q'=Q/~; s'=[s]; F'={[p]|p € F}; and
o’ ([pl,a)=[d (p,a)] for all peQ and acX. But well-defined?
Lem 13.5. if p =~ g then § (p,a) = 6 (g,a).
Hence [p]=[q] = p=q = d&(p.a) = 6(q.a) = [5 (p.a)] = [6 (q.a)]
Pf. By def. [6 (p,a)] = [0(g,a)] Iff 5(p,a) = o (q,a)
Iff vyeX* A(d (p,a),y) e F < A(d(g,a),y) € F
f vyeX*A(p,ay) eF & A(g,ay) e F
if p~q.
Lemma 13.6. pe Fiff [p] € F'.
pf. => : trival.
<=:needtoshowthatifqpandp e F,thenq e F.
But this is trivial since p = A(p,e) EFIff A(g,e)=q€F

PROPERTIES OF THE QUOTIENT
MACHINE.

Lemma 13.7: V x € X%, A’([p],x) = [A(p,X)].
Pf. By induction on |x|.
Basis x = €2 A’([p], €] = [P] = [A(p, €)].
Ind. step: Assume A’([p],x) = [A(p,x)] and let a € X.
A([pl.xa) = 8" (A’(p.x),a) = &'([A(p,x)],a) --- Ind. hyp.
=[0(A (p,x),a)] -- def. of &’
= [A (p,xa)]. -- def. of A.
Theorem 13.8: L(M/=) = L(M).
Pf: V x € X%,
X € L(M/=) iff A’(s’x) € F’
Iff A’([s],x) € F' iff [A(s,X)] € F’ --- lem 13.7
Iff A(s,x) €F ---lem 13.6
iff x € L(M).

"Mz NEED NOT BE M 'MERGED FURTHER

eno second ~
[p] ~[q] If V X € 2%, A’ ([p],X) e F & A([q]l.x) e F

Now

[p] ~ [d]

iff vxeZX* A([p],x) e FF & A’([q],x) € F’ -- def.of~

Iff vxezxX* [A(p,X)] € F & [A(g,X)] € F' --lem 13.7

iff vxeX* A(p,x) eF <= A(g,X) EF --lem 13.6
Iff p~rq --defofx

Iff [p] =[g] -- property of equivalence ~

1. Write down a table of all pairs {p,q}, pf 2 @ 5(p,a)
AMENIMIZAEION ALGORITHMax | +=m I
2. mark {p,q} if p € Fand q € F or vice versa. g 4 5 (g,a)

3. Repeat until no additional pairs marked:

3.1 if 3 unmarked pair {p,q} s.t. {6(p,q), 6(qg,a) } is marked for
some a € %, then mark {p,q}.

4. When done, p = q iff {p,q} is not marked.
Let M, (k=0) be the set of pairs marked after the k-th
iteration of step 3. [and M, is the set of pairs before step 3.]

Notes: (1) M = U, .5 M, is the final set of pairs marked by the
alg. (2) The algorithm must terminate since there are
totally only C(n,2) pairs and each iteration of step 3 must
mark at least one pair for it to not terminate..

a

AADI E -
FVIN Emk=e

1F

2F

5F

AN E.

« The DI?%J (Ex-13-2) 1

INITIALTABLE

AFTER-FIRST-PASS-QF STEP-3-(M7)

2ND PASS OF STEP 3. (M, & M,)

« The result . T\ Z and 3 = 4.

2 M

3 M2 M M

4 M2 M M

5 M M1 M1 M M

0 1 2 3 4

CORRECTNESS OF THE MINIMIZATION
ALGORITHM

Let M, (k=20) be the set of pairs marked after the k-th itration of
step 3. [and M, is the set of pairs befer step 3.]

Lemma: {p,q} € M, Iff IxeX* of length < k s.t. A(p,x) € F and A(Q,X) &
F or vice versa,

Pf. By ind. on k. Basis k = 0. trivial.
Ind. step: 3 x € * of length < k+1 s.t. A (p,x) € F <A (q,X) € F,
iff 3y eX*oflength<ks.t.A(p,y) e F&A(q,y) € F, or
3 ay € X* of length < k+1 s.t. A(0 (p,a),y) € F &A(8(g,a),y) € F,
iff {p,q}eM,or{s(p,a),os(q,a)} € M, forsome a € X.
iff {p.a} € My, 1.

Theorem 14.3: The pair {p,q} is marked by the algorithm iff not(p ~
g) (Le.,IXeEX*st. A(p,X) EF & A(q,X) € F)

Pf. not(p ~ q) iff 3 xeX*s.t. A(p,x) E F A (q,X) € F
iff {p,q}e M, forsome k=0
iff{p,a} € M = U, M.

