
SOFTWARE ENGINEERING

LECTURE-26

Design Engineering

TOPIC COVERED

- Introduction

- Design quality

- Design concepts

- The design model

4

FIVE NOTABLE DESIGN QUOTES

 "Questions about whether design is necessary or affordable are quite
beside the point; design is inevitable. The alternative to good design is
bad design, [rather than] no design at all." Douglas Martin

 "You can use an eraser on the drafting table or a sledge hammer on
the construction site." Frank Lloyd Wright

 "The public is more familiar with bad design than good design. If is, in
effect, conditioned to prefer bad design, because that is what it lives
with; the new [design] becomes threatening, the old reassuring."
Paul Rand

 "A common mistake that people make when trying to design something
completely foolproof was to underestimate the ingenuity of complete
fools." Douglas Adams

 "Every now and then go away, have a little relaxation, for when you
come back to your work your judgment will be surer. Go some
distance away because then the work appears smaller and more of it
can be taken in at a glance and a lack of harmony and proportion is
more readily seen." Leonardo DaVinci

5

PURPOSE OF DESIGN

 Design is where customer requirements, business needs, and
technical considerations all come together in the formulation of a
product or system

 The design model provides detail about the software data structures,
architecture, interfaces, and components

 The design model can be assessed for quality and be improved before
code is generated and tests are conducted

 Does the design contain errors, inconsistencies, or omissions?

 Are there better design alternatives?

 Can the design be implemented within the constraints, schedule, and cost
that have been established?

(More on next slide)

6

PURPOSE OF DESIGN (CONTINUED)

 A designer must practice diversification and convergence

 The designer selects from design components, component solutions, and
knowledge available through catalogs, textbooks, and experience

 The designer then chooses the elements from this collection that meet the
requirements defined by requirements engineering and analysis modeling

 Convergence occurs as alternatives are considered and rejected until one
particular configuration of components is chosen

 Software design is an iterative process through which requirements are
translated into a blueprint for constructing the software

 Design begins at a high level of abstraction that can be directly traced back
to the data, functional, and behavioral requirements

 As design iteration occurs, subsequent refinement leads to design
representations at much lower levels of abstraction

7

FROM ANALYSIS MODEL TO
DESIGN MODEL

 Each element of the analysis model provides information that is
necessary to create the four design models

 The data/class design transforms analysis classes into design
classes along with the data structures required to implement the
software

 The architectural design defines the relationship between major
structural elements of the software; architectural styles and design
patterns help achieve the requirements defined for the system

 The interface design describes how the software communicates
with systems that interoperate with it and with humans that use it

 The component-level design transforms structural elements of the
software architecture into a procedural description of software
components

(More on next slide)

8

From Analysis Model to

Design Model (continued)

Data/Class Design

(Class-based model, Behavioral model)

Architectural Design

(Class-based model, Flow-oriented model)

Interface Design

(Scenario-based model, Flow-oriented model

Behavioral model)

Component-level Design

(Class-based model, Flow-oriented model

Behavioral model)

9

TASK SET FOR SOFTWARE DESIGN

1) Examine the information domain model and design
appropriate data structures for data objects and their attributes

2) Using the analysis model, select an architectural style (and
design patterns) that are appropriate for the software

3) Partition the analysis model into design subsystems and
allocate these subsystems within the architecture

a) Design the subsystem interfaces

b) Allocate analysis classes or functions to each subsystem

4) Create a set of design classes or components

a) Translate each analysis class description into a design class

b) Check each design class against design criteria; consider
inheritance issues

c) Define methods associated with each design class

d) Evaluate and select design patterns for a design class or
subsystem

(More on next slide)

10

TASK SET FOR SOFTWARE DESIGN
(CONTINUED)

5) Design any interface required with external systems or devices

6) Design the user interface

7) Conduct component-level design

a) Specify all algorithms at a relatively low level of abstraction

b) Refine the interface of each component

c) Define component-level data structures

d) Review each component and correct all errors uncovered

8) Develop a deployment model

 Show a physical layout of the system, revealing which
components will be located where in the physical computing
environment

DESIGN QUALITY

12

QUALITY'S ROLE

 The importance of design is quality

 Design is the place where quality is fostered

 Provides representations of software that can be assessed for
quality

 Accurately translates a customer's requirements into a finished
software product or system

 Serves as the foundation for all software engineering activities that
follow

 Without design, we risk building an unstable system that

 Will fail when small changes are made

 May be difficult to test

 Cannot be assessed for quality later in the software process when
time is short and most of the budget has been spent

 The quality of the design is assessed through a series of formal
technical reviews or design walkthroughs

13

GOALS OF A GOOD DESIGN

 The design must implement all of the explicit requirements
contained in the analysis model

 It must also accommodate all of the implicit requirements desired

by the customer

 The design must be a readable and understandable guide for

those who generate code, and for those who test and support

the software

 The design should provide a complete picture of the software,

addressing the data, functional, and behavioral domains from an

implementation perspective

"Writing a clever piece of code that works is one thing; designing something

that can support a long-lasting business is quite another."

14

DESIGN QUALITY GUIDELINES
1) A design should exhibit an architecture that

a) Has been created using recognizable architectural styles or
patterns

b) Is composed of components that exhibit good design
characteristics

c) Can be implemented in an evolutionary fashion, thereby
facilitating implementation and testing

2) A design should be modular; that is, the software should be
logically partitioned into elements or subsystems

3) A design should contain distinct representations of data,
architecture, interfaces, and components

4) A design should lead to data structures that are appropriate for
the classes to be implemented and are drawn from
recognizable data patterns

(more on next slide)

15

QUALITY GUIDELINES (CONTINUED)
5) A design should lead to components that exhibit independent

functional characteristics

6) A design should lead to interfaces that reduce the complexity

of connections between components and with the external

environment

7) A design should be derived using a repeatable method that is

driven by information obtained during software requirements

analysis

8) A design should be represented using a notation that

effectively communicates its meaning

"Quality isn't something you lay on top of subjects and objects

like tinsel on a Christmas tree."

DESIGN CONCEPTS

17

DESIGN CONCEPTS
 Abstraction

 Procedural abstraction – a sequence of instructions that have a specific
and limited function

 Data abstraction – a named collection of data that describes a data
object

 Architecture

 The overall structure of the software and the ways in which the structure
provides conceptual integrity for a system

 Consists of components, connectors, and the relationship between them

 Patterns

 A design structure that solves a particular design problem within a
specific context

 It provides a description that enables a designer to determine whether
the pattern is applicable, whether the pattern can be reused, and
whether the pattern can serve as a guide for developing similar patterns

(more on next slide)

18

DESIGN CONCEPTS (CONTINUED)
 Modularity

 Separately named and addressable components (i.e., modules) that are
integrated to satisfy requirements (divide and conquer principle)

 Makes software intellectually manageable so as to grasp the control
paths, span of reference, number of variables, and overall complexity

 Information hiding

 The designing of modules so that the algorithms and local data contained
within them are inaccessible to other modules

 This enforces access constraints to both procedural (i.e., implementation)
detail and local data structures

 Functional independence

 Modules that have a "single-minded" function and an aversion to
excessive interaction with other modules

 High cohesion – a module performs only a single task

 Low coupling – a module has the lowest amount of connection needed
with other modules

(more on next slide)

19

DESIGN CONCEPTS (CONTINUED)

 Stepwise refinement

 Development of a program by successively refining levels of
procedure detail

 Complements abstraction, which enables a designer to specify
procedure and data and yet suppress low-level details

 Refactoring

 A reorganization technique that simplifies the design (or internal
code structure) of a component without changing its function or
external behavior

 Removes redundancy, unused design elements, inefficient or
unnecessary algorithms, poorly constructed or inappropriate data
structures, or any other design failures

 Design classes

 Refines the analysis classes by providing design detail that will
enable the classes to be implemented

 Creates a new set of design classes that implement a software
infrastructure to support the business solution

20

TYPES OF DESIGN CLASSES

 User interface classes – define all abstractions necessary for
human-computer interaction (usually via metaphors of real-world
objects)

 Business domain classes – refined from analysis classes; identify
attributes and services (methods) that are required to implement
some element of the business domain

 Process classes – implement business abstractions required to
fully manage the business domain classes

 Persistent classes – represent data stores (e.g., a database) that
will persist beyond the execution of the software

 System classes – implement software management and control
functions that enable the system to operate and communicate
within its computing environment and the outside world

21

CHARACTERISTICS OF A WELL-FORMED DESIGN
CLASS

 Complete and sufficient

 Contains the complete encapsulation of all attributes and methods that exist
for the class

 Contains only those methods that are sufficient to achieve the intent of the
class

 Primitiveness

 Each method of a class focuses on accomplishing one service for the class

 High cohesion

 The class has a small, focused set of responsibilities and single-mindedly
applies attributes and methods to implement those responsibilities

 Low coupling

 Collaboration of the class with other classes is kept to an acceptable
minimum

 Each class should have limited knowledge of other classes in other
subsystems

THE DESIGN MODEL

Data/Class Design

Architectural Design

Interface Design

Component-level Design

Process Dimension (Progression)

A
b

st
ra

ct
io

n
 D

im
en

si
o
n

Data/Class

Elements

Interface

Elements

Architectural

Elements

Component-level

Elements

Deployment-level

Elements

DIMENSIONS OF THE DESIGN MODEL

 Analysis model

 Design model

Low

High

24

INTRODUCTION

 The design model can be viewed in two different dimensions

 (Horizontally) The process dimension indicates the evolution of the
parts of the design model as each design task is executed

 (Vertically) The abstraction dimension represents the level of detail
as each element of the analysis model is transformed into the
design model and then iteratively refined

 Elements of the design model use many of the same UML
diagrams used in the analysis model

 The diagrams are refined and elaborated as part of the design

 More implementation-specific detail is provided

 Emphasis is placed on

 Architectural structure and style

 Interfaces between components and the outside world

 Components that reside within the architecture

(More on next slide)

25

INTRODUCTION (CONTINUED)

 Design model elements are not always developed in a
sequential fashion

 Preliminary architectural design sets the stage

 It is followed by interface design and component-level design,
which often occur in parallel

 The design model has the following layered elements

 Data/class design

 Architectural design

 Interface design

 Component-level design

 A fifth element that follows all of
the others is deployment-level design

Data/Class Design

Architectural Design

Interface Design

Component-level Design

26

DESIGN ELEMENTS

 Data/class design

 Creates a model of data and objects that is represented at a high level
of abstraction

 Architectural design

 Depicts the overall layout of the software

 Interface design

 Tells how information flows into and out of the system and how it is
communicated among the components defined as part of the
architecture

 Includes the user interface, external interfaces, and internal interfaces

 Component-level design elements

 Describes the internal detail of each software component by way of data
structure definitions, algorithms, and interface specifications

 Deployment-level design elements

 Indicates how software functionality and subsystems will be allocated
within the physical computing environment that will support the software

27

PATTERN-BASED SOFTWARE DESIGN

 Mature engineering disciplines make use of thousands of design patterns for
such things as buildings, highways, electrical circuits, factories, weapon
systems, vehicles, and computers

 Design patterns also serve a purpose in software engineering

 Architectural patterns

 Define the overall structure of software

 Indicate the relationships among subsystems and software components

 Define the rules for specifying relationships among software elements

 Design patterns

 Address a specific element of the design such as an aggregation of components or
solve some design problem, relationships among components, or the mechanisms
for effecting inter-component communication

 Consist of creational, structural, and behavioral patterns

 Coding patterns

 Describe language-specific patterns that implement an algorithmic or data
structure element of a component, a specific interface protocol, or a mechanism
for communication among components



