
SOFTWARE ENGINEERING

LECTURE-22

Project Management Concepts

TOPICS COVERED

- The Management Spectrum

- The People

- The Product

- The Process

- The Project

THE MANAGEMENT SPECTRUM
 Effective software project management focuses on these items

(in this order)
 The people

 Deals with the cultivation of motivated, highly skilled people

 Consists of the stakeholders, the team leaders, and the software team

 The product
 Product objectives and scope should be established before a project can

be planned

 The process
 The software process provides the framework from which a

comprehensive plan for software development can be established

 The project
 Planning and controlling a software project is done for one primary

reason…it is the only known way to manage complexity

 In a 1998 survey, 26% of software projects failed outright, 46%
experienced cost and schedule overruns

 4

5

People

Product

Process

Project

THE PEOPLE: THE STAKEHOLDERS

 Five categories of stakeholders

 Senior managers – define business issues that often have

significant influence on the project

 Project (technical) managers – plan, motivate, organize, and

control the practitioners who do the work

 Practitioners – deliver the technical skills that are necessary to

engineer a product or application

 Customers – specify the requirements for the software to be

engineered and other stakeholders who have a peripheral

interest in the outcome

 End users – interact with the software once it is released for

production use

6

THE PEOPLE: TEAM LEADERS

 Competent practitioners often fail to make good team leaders;
they just don’t have the right people skills

 Qualities to look for in a team leader
 Motivation – the ability to encourage technical people to produce to

their best ability
 Organization – the ability to mold existing processes (or invent new

ones) that will enable the initial concept to be translated into a final
product

 Ideas or innovation – the ability to encourage people to create and
feel creative even when they must work within bounds established
for a particular software product or application

 Team leaders should use a problem-solving management style
 Concentrate on understanding the problem to be solved
 Manage the flow of ideas
 Let everyone on the team know, by words and actions, that quality

counts and that it will not be compromised

7

(More on next slide)

THE PEOPLE: TEAM LEADERS

(CONTINUED)

 Another set of useful leadership traits
 Problem solving – diagnose, structure a solution, apply lessons

learned, remain flexible

 Managerial identity – take charge of the project, have
confidence to assume control, have assurance to allow good
people to do their jobs

 Achievement – reward initiative, demonstrate that controlled risk
taking will not be punished

 Influence and team building – be able to “read” people,
understand verbal and nonverbal signals, be able to react to
signals, remain under control in high-stress situations

8

THE PEOPLE: THE SOFTWARE TEAM

 Seven project factors to consider when structuring a software
development team

 The difficulty of the problem to be solved

 The size of the resultant program(s) in source lines of code

 The time that the team will stay together

 The degree to which the problem can be modularized

 The required quality and reliability of the system to be built

 The rigidity of the delivery date

 The degree of sociability (communication) required for the project

9

(More on next slide)

THE PEOPLE: THE SOFTWARE

TEAM (CONTINUED)

 Four organizational paradigms for software development
teams

 Closed paradigm – traditional hierarchy of authority; works well
when producing software similar to past efforts; members are
less likely to be innovative

 Random paradigm – depends on individual initiative of team
members; works well for projects requiring innovation or
technological breakthrough; members may struggle when orderly
performance is required

 Open paradigm – hybrid of the closed and random paradigm;
works well for solving complex problems; requires collaboration,
communication, and consensus among members

 Synchronous paradigm – organizes team members based on
the natural pieces of the problem; members have little
communication outside of their subgroups

10

(More on next slide)

THE PEOPLE: THE SOFTWARE

TEAM (CONTINUED)

 Five factors that cause team toxity (i.e., a toxic team
environment)
 A frenzied work atmosphere

 High frustration that causes friction among team members

 A fragmented or poorly coordinated software process

 An unclear definition of roles on the software team

 Continuous and repeated exposure to failure

 How to avoid these problems
 Give the team access to all information required to do the job

 Do not modify major goals and objectives, once they are defined,
unless absolutely necessary

 Give the team as much responsibility for decision making as
possible

 Let the team recommend its own process model

 Let the team establish its own mechanisms for accountability (i.e.,
reviews)

 Establish team-based techniques for feedback and problem
solving

11

THE PEOPLE: COORDINATION AND

COMMUNICATION ISSUES

 Key characteristics of modern software make projects fail

 scale, uncertainty, interoperability

 To better ensure success

 Establish effective methods for coordinating the people who do the

work

 Establish methods of formal and information communication among

team members

12

GROUP DYNAMICS
 Based on studies published by B. Tuckman in 1965

 Updated later in 1977

 Describes a four-stage model

 Forming

 Storming

 Norming

 Performing

13

GROUP DYNAMICS MODEL

 Forming

 Group members rely on safe, patterned behavior and look to the group

leader for guidance and direction

 Impressions are gathered and similarities and differences are noted

 Serious topics and feelings are avoided

 To grow, members must relinquish the comfort of non-threatening topics

and risk the possibility of conflict

14

GROUP DYNAMICS MODEL

 Storming

 As group members organize for the tasks, conflict inevitably results in
their personal relations and cliques start to form

 Individuals have to bend and mold their feelings to fit the group

 Fear of exposure or fear of failure causes an increased desire for
structural clarification and commitment

 Conflicts arise over leadership, structure, power, and authority

 Member behavior may have wide swings based on emerging issues of
competition and hostilities

 Some members remain silent while others attempt to dominate

15

GROUP DYNAMICS MODEL

(CONTINUED)

 Norming

 Members engage in active acknowledgement of all members’ contributions,
community building, and solving of group issues

 Members are willing to change their preconceived ideas or opinions based on
facts presented by the group

 Leadership is shared, active listening occurs, and cliques dissolve

 Members began to identify with one another, which leads to a level of trust in
their personal relations and contributes to cohesion

 Members begin to experience a sense of group belonging

16

GROUP DYNAMICS MODEL

(CONTINUED)

 Performing

 The capacity, range, and depth of personal relations in the group expand to

true interdependence

 Members can work independently, in subgroups, or altogether with equal

ability and success

 The group is most productive, members become self-assuring, and the need

for group approval is past

 Genuine problem solving can occur leading towards optimal solutions

17

18

People

Product

Process

Project

THE PRODUCT

 The scope of the software development must be established
and bounded
 Context – How does the software to be built fit into a larger

system, product, or business context, and what constraints are
imposed as a result of the context?

 Information objectives – What customer-visible data objects are
produced as output from the software? What data objects are
required for input?

 Function and performance – What functions does the software
perform to transform input data into output? Are there any
special performance characteristics to be addressed?

 Software project scope must be unambiguous and
understandable at both the managerial and technical levels

19

(More on next slide)

THE PRODUCT (CONTINUED)

 Problem decomposition

 Also referred to as partitioning or problem elaboration

 Sits at the core of software requirements analysis

 Two major areas of problem decomposition

 The functionality that must be delivered

 The process that will be used to deliver it

20

21

People

Product

Process

Project

THE PROCESS

 Getting Started
 The project manager must decide which process model is most

appropriate based on
 The customers who have requested the product and the people who

will do the work

 The characteristics of the product itself

 The project environment in which the software team works

 Once a process model is selected, a preliminary project plan is
established based on the process framework activities

 Process decomposition then begins

 The result is a complete plan reflecting the work tasks required to
populate the framework activities

 Project planning begins as a melding of the product and the
process based on the various framework activities

22

23

People

Product

Process

Project

THE PROJECT: A COMMON SENSE APPROACH

 Start on the right foot
 Understand the problem; set realistic objectives and expectations; form a

good team

 Maintain momentum
 Provide incentives to reduce turnover of people; emphasize quality in every

task; have senior management stay out of the team’s way

 Track progress
 Track the completion of work products; collect software process and project

measures; assess progress against expected averages

 Make smart decisions
 Keep it simple; use COTS or existing software before writing new code;

follow standard approaches; identify and avoid risks; always allocate more
time than you think you need to do complex or risky tasks

 Conduct a post mortem analysis
 Track lessons learned for each project; compare planned and actual

schedules; collect and analyze software project metrics; get feedback from
teams members and customers; record findings in written form 24

THE PROJECT: SIGNS THAT IT IS IN

JEOPARDY
 Software people don't understand their customer's needs

 The product scope is poorly defined

 Changes are managed poorly

 The chosen technology changes

 Business needs change (or are poorly defined)

 Deadlines are unrealistic

 Users are resistant

 Sponsorship is lost (or was never properly obtained)

 The project team lacks people with appropriate skills

 Managers (and practitioners) avoid best practices and lessons
learned

25

THE PROJECT: THE W5HH PRINCIPLE

 Why is the system being developed?
 Assesses the validity of business reasons and justifications

 What will be done?
 Establishes the task set required for the project

 When will it be done?
 Establishes a project schedule

 Who is responsible for a function?
 Defines the role and responsibility of each team member

 Where are they organizationally located?
 Notes the organizational location of team members, customers, and other

stakeholders

 How will the job be done technically and managerially?
 Establishes the management and technical strategy for the project

 How much of each resource is needed?
 Establishes estimates based on the answers to the previous questions

26

A series of questions that lead to a definition of key project characteristics

and the resultant project plan

SUMMARY

27

People

Product

Process

Project



