
SOFTWARE ENGINEERING

LECTURE-15

Architectural Design

TOPICS COVERED

- Introduction

- Data design

- Software architectural styles

- Architectural design process

- Assessing alternative architectural designs

INTRODUCTION

DEFINITIONS

 The software architecture of a program or computing system is the
structure or structures of the system which comprise

 The software components

 The externally visible properties of those components

 The relationships among the components

 Software architectural design represents the structure of the data and
program components that are required to build a computer-based
system

 An architectural design model is transferable

 It can be applied to the design of other systems

 It represents a set of abstractions that enable software engineers to
describe architecture in predictable ways

5

ARCHITECTURAL DESIGN PROCESS

 Basic Steps

 Creation of the data design

 Derivation of one or more representations of the architectural structure of
the system

 Analysis of alternative architectural styles to choose the one best suited to
customer requirements and quality attributes

 Elaboration of the architecture based on the selected architectural style

 A database designer creates the data architecture for a system to
represent the data components

 A system architect selects an appropriate architectural style derived
during system engineering and software requirements analysis

6

EMPHASIS ON SOFTWARE COMPONENTS

 A software architecture enables a software engineer to

 Analyze the effectiveness of the design in meeting its stated
requirements

 Consider architectural alternatives at a stage when making design
changes is still relatively easy

 Reduce the risks associated with the construction of the software

 Focus is placed on the software component

 A program module

 An object-oriented class

 A database

 Middleware

7

IMPORTANCE OF SOFTWARE ARCHITECTURE

 Representations of software architecture are an enabler for

communication between all stakeholders interested in the

development of a computer-based system

 The software architecture highlights early design decisions

that will have a profound impact on all software engineering

work that follows and, as important, on the ultimate success of

the system as an operational entity

 The software architecture constitutes a relatively small,

intellectually graspable model of how the system is structured

and how its components work together

8

EXAMPLE SOFTWARE ARCHITECTURE

DIAGRAMS

9

DATA DESIGN

PURPOSE OF DATA DESIGN

 Data design translates data objects defined as part of the
analysis model into

 Data structures at the software component level

 A possible database architecture at the application level

 It focuses on the representation of data structures that are
directly accessed by one or more software components

 The challenge is to store and retrieve the data in such way
that useful information can be extracted from the data
environment

 "Data quality is the difference between a data warehouse and
a data garbage dump"

11

DATA DESIGN PRINCIPLES

 The systematic analysis principles that are applied to function
and behavior should also be applied to data

 All data structures and the operations to be performed on each
one should be identified

 A mechanism for defining the content of each data object should
be established and used to define both data and the operations
applied to it

 Low-level data design decisions should be deferred until late in
the design process

 The representation of a data structure should be known only to
those modules that must make direct use of the data contained
within the structure

 A library of useful data structures and the operations that may be
applied to them should be developed

 A software programming language should support the
specification and realization of abstract data types

12

SOFTWARE ARCHITECTURAL STYLES

COMMON ARCHITECTURAL STYLES

OF AMERICAN HOMES

14

COMMON ARCHITECTURAL STYLES

OF AMERICAN HOMES

15

A-Frame

Bungalow

Cape Cod

Colonial

Federal

Four square

Greek Revival

Georgian

Pueblo

Prairie Style

Ranch

Split level

Tidewater

Victorian

Tudor

SOFTWARE ARCHITECTURAL STYLE

 The software that is built for computer-based systems exhibit
one of many architectural styles

 Each style describes a system category that encompasses

 A set of component types that perform a function required by the
system

 A set of connectors (subroutine call, remote procedure call, data
stream, socket) that enable communication, coordination, and
cooperation among components

 Semantic constraints that define how components can be integrated
to form the system

 A topological layout of the components indicating their runtime
interrelationships

16

A TAXONOMY OF ARCHITECTURAL STYLES

17

Independent Components

Communicating

Processes

Event Systems

Client/Server Peer-to-Peer
Implicit

Invocation

Explicit

Invocation

Data Flow

Batch Sequential Pipe and

Filter

Virtual Machine

Interpreter Rule-Based

System

Data-Centered

Repository Blackboard

Call and Return

Main Program

and Subroutine

Object

Oriented Layered

Remote Procedure Call

DATA FLOW STYLE

18

Validate Sort Update Report

DATA FLOW STYLE
 Has the goal of modifiability

 Characterized by viewing the system as a series of transformations
on successive pieces of input data

 Data enters the system and then flows through the components
one at a time until they are assigned to output or a data store

 Batch sequential style

 The processing steps are independent components

 Each step runs to completion before the next step begins

 Pipe-and-filter style

 Emphasizes the incremental transformation of data by successive
components

 The filters incrementally transform the data (entering and exiting via
streams)

 The filters use little contextual information and retain no state between
instantiations

 The pipes are stateless and simply exist to move data between filters 19

(More on next slide)

DATA FLOW STYLE (CONTINUED)
 Advantages

 Has a simplistic design in the limited ways in which the components
interact with the environment

 Consists of no more and no less than the construction of its parts

 Simplifies reuse and maintenance

 Is easily made into a parallel or distributed execution in order to
enhance system performance

 Disadvantages

 Implicitly encourages a batch mentality so interactive applications are
difficult to create in this style

 Ordering of filters can be difficult to maintain so the filters cannot
cooperatively interact to solve a problem

 Exhibits poor performance

 Filters typically force the least common denominator of data representation
(usually ASCII stream)

 Filter may need unlimited buffers if they cannot start producing output until
they receive all of the input

 Each filter operates as a separate process or procedure call, thus incurring
overhead in set-up and take-down time

20

(More on next slide)

DATA FLOW STYLE (CONTINUED)

 Use this style when it makes sense to view your system as one

that produces a well-defined easily identified output

 The output should be a direct result of sequentially transforming a well-

defined easily identified input in a time-independent fashion

21

CALL-AND-RETURN STYLE

22

Main module

Subroutine A
Subroutine B

 Subroutine A-1 Subroutine A-2

 Physical layer

 Data layer

 Network layer

 Transport layer

 Application layer Class W Class V

 Class X

 Class Z

 Class Y

CALL-AND-RETURN STYLE
 Has the goal of modifiability and scalability

 Has been the dominant architecture since the start of software
development

 Main program and subroutine style

 Decomposes a program hierarchically into small pieces (i.e., modules)

 Typically has a single thread of control that travels through various
components in the hierarchy

 Remote procedure call style

 Consists of main program and subroutine style of system that is
decomposed into parts that are resident on computers connected via a
network

 Strives to increase performance by distributing the computations and
taking advantage of multiple processors

 Incurs a finite communication time between subroutine call and response

23

(More on next slide)

CALL-AND-RETURN STYLE (CONTINUED)
 Object-oriented or abstract data type system

 Emphasizes the bundling of data and how to manipulate and access data

 Keeps the internal data representation hidden and allows access to the object
only through provided operations

 Permits inheritance and polymorphism

 Layered system

 Assigns components to layers in order to control inter-component interaction

 Only allows a layer to communicate with its immediate neighbor

 Assigns core functionality such as hardware interfacing or system kernel
operations to the lowest layer

 Builds each successive layer on its predecessor, hiding the lower layer and
providing services for the upper layer

 Is compromised by layer bridging that skips one or more layers to improve
runtime performance

 Use this style when the order of computation is fixed, when interfaces are
specific, and when components can make no useful progress while
awaiting the results of request to other components

24

DATA-CENTERED STYLE

25

Shared Data

Client A Client B Client C

Client D Client E Client F

DATA-CENTERED STYLE (CONTINUED)

 Has the goal of integrating the data

 Refers to systems in which the access and update of a widely
accessed data store occur

 A client runs on an independent thread of control

 The shared data may be a passive repository or an active blackboard

 A blackboard notifies subscriber clients when changes occur in data of
interest

 At its heart is a centralized data store that communicates with a
number of clients

 Clients are relatively independent of each other so they can be added,
removed, or changed in functionality

 The data store is independent of the clients

26

(More on next slide)

DATA-CENTERED STYLE (CONTINUED)

 Use this style when a central issue is the storage, representation,

management, and retrieval of a large amount of related persistent data

 Note that this style becomes client/server if the clients are modeled as

independent processes

27

VIRTUAL MACHINE STYLE

28

Interpretation

Engine

Program Data
Program

Instructions

Program

Internal State

VIRTUAL MACHINE STYLE
 Has the goal of portability

 Software systems in this style simulate some functionality that is
not native to the hardware and/or software on which it is
implemented

 Can simulate and test hardware platforms that have not yet been
built

 Can simulate "disaster modes" as in flight simulators or safety-
critical systems that would be too complex, costly, or dangerous to
test with the real system

 Examples include interpreters, rule-based systems, and
command language processors

 Interpreters

 Add flexibility through the ability to interrupt and query the program
and introduce modifications at runtime

 Incur a performance cost because of the additional computation
involved in execution

 Use this style when you have developed a program or some
form of computation but have no make of machine to directly run
it on

29

INDEPENDENT COMPONENT STYLE

30

Server

Client A Client B

 Client C Client D

Peer W Peer X

 Peer Y Peer Z

INDEPENDENT COMPONENT STYLE
 Consists of a number of independent processes that

communicate through messages

 Has the goal of modifiability by decoupling various portions of the
computation

 Sends data between processes but the processes do not directly
control each other

 Event systems style

 Individual components announce data that they wish to share
(publish) with their environment

 The other components may register an interest in this class of data
(subscribe)

 Makes use of a message component that manages communication
among the other components

 Components publish information by sending it to the message
manager

 When the data appears, the subscriber is invoked and receives the
data

 Decouples component implementation from knowing the names and
locations of other components

31

(More on next slide)

INDEPENDENT COMPONENT STYLE

(CONTINUED)

 Communicating processes style

 These are classic multi-processing systems

 Well-know subtypes are client/server and peer-to-peer

 The goal is to achieve scalability

 A server exists to provide data and/or services to one or more clients

 The client originates a call to the server which services the request

 Use this style when

 Your system has a graphical user interface

 Your system runs on a multiprocessor platform

 Your system can be structured as a set of loosely coupled
components

 Performance tuning by reallocating work among processes is
important

 Message passing is sufficient as an interaction mechanism among
components

32

HETEROGENEOUS STYLES

 Systems are seldom built from a single architectural style

 Three kinds of heterogeneity

 Locationally heterogeneous

 The drawing of the architecture reveals different styles in different

areas (e.g., a branch of a call-and-return system may have a shared

repository)

 Hierarchically heterogeneous

 A component of one style, when decomposed, is structured according

to the rules of a different style

 Simultaneously heterogeneous

 Two or more architectural styles may both be appropriate descriptions

for the style used by a computer-based system

33

ARCHITECTURAL DESIGN PROCESS

ARCHITECTURAL DESIGN STEPS

1) Represent the system in context

2) Define archetypes

3) Refine the architecture into components

4) Describe instantiations of the system

35

"A doctor can bury his mistakes, but an architect can only advise

his client to plant vines." Frank Lloyd Wright

1. REPRESENT THE SYSTEM IN

CONTEXT

36

Target system

I/F I/F

I/F I/F I/F

Actors

Peers

"Super"ordinate systems

"Sub"ordinate systems

Used by

Produces or

consumes Produces or

consumes
Depends on

Uses

(More on next slide)

1. REPRESENT THE SYSTEM IN

CONTEXT (CONTINUED)

 Use an architectural context diagram (ACD) that shows

 The identification and flow of all information into and out of a system

 The specification of all interfaces

 Any relevant support processing from/by other systems

 An ACD models the manner in which software interacts with entities
external to its boundaries

 An ACD identifies systems that interoperate with the target system

 Super-ordinate systems

 Use target system as part of some higher level processing scheme

 Sub-ordinate systems

 Used by target system and provide necessary data or processing

 Peer-level systems

 Interact on a peer-to-peer basis with target system to produce or consume data

 Actors

 People or devices that interact with target system to produce or consume data
37

2. DEFINE ARCHETYPES
 Archetypes indicate the important abstractions within the problem

domain (i.e., they model information)

 An archetype is a class or pattern that represents a core abstraction that
is critical to the design of an architecture for the target system

 It is also an abstraction from a class of programs with a common
structure and includes class-specific design strategies and a collection
of example program designs and implementations

 Only a relatively small set of archetypes is required in order to design
even relatively complex systems

 The target system architecture is composed of these archetypes
 They represent stable elements of the architecture

 They may be instantiated in different ways based on the behavior of the
system

 They can be derived from the analysis class model

 The archetypes and their relationships can be illustrated in a UML class
diagram

38

EXAMPLE ARCHETYPES IN

HUMANITY

39

 Addict/Gambler

 Amateur

 Beggar

 Clown

 Companion

 Damsel in distress

 Destroyer

 Detective

 Don Juan

 Drunk

 Engineer

 Father

 Gossip

 Guide

 Healer

 Hero

 Judge

 King

 Knight

 Liberator/Rescuer

 Lover/Devotee

 Martyr

 Mediator

 Mentor/Teacher

 Messiah/Savior

 Monk/Nun

 Mother

 Mystic/Hermit

 Networker

 Pioneer

 Poet

 Priest/Minister

 Prince

 Prostitute

 Queen

 Rebel/Pirate

 Saboteur

 Samaritan

 Scribe/Journalist

• Seeker/Wanderer

• Servant/Slave

• Storyteller

• Student

• Trickster/Thief

• Vampire

• Victim

• Virgin

• Visionary/Prophet

• Warrior/Soldier

EXAMPLE ARCHETYPES IN

SOFTWARE ARCHITECTURE

40

 Node

 Detector/Sensor

 Indicator

 Controller

 Manager

 Moment-Interval

 Role

 Description

 Party, Place, or Thing

(Source: Archetypes, Color, and the Domain Neutral Component) (Source: Pressman)

ARCHETYPES – THEIR ATTRIBUTES

41

ARCHETYPES – THEIR METHODS

42

3. REFINE THE ARCHITECTURE INTO

COMPONENTS

 Based on the archetypes, the architectural designer refines the
software architecture into components to illustrate the overall structure
and architectural style of the system

 These components are derived from various sources

 The application domain provides application components, which are the
domain classes in the analysis model that represent entities in the real
world

 The infrastructure domain provides design components (i.e., design
classes) that enable application components but have no business
connection

 Examples: memory management, communication, database, and task
management

 The interfaces in the ACD imply one or more specialized components that
process the data that flow across the interface

 A UML class diagram can represent the classes of the refined
architecture and their relationships

43

4. DESCRIBE INSTANTIATIONS OF

THE SYSTEM
 An actual instantiation of the architecture is developed by

applying it to a specific problem

 This demonstrates that the architectural structure, style and

components are appropriate

 A UML component diagram can be used to represent this

instantiation

44

ASSESSING ALTERNATIVE ARCHITECTURAL

DESIGNS

VARIOUS ASSESSMENT APPROACHES

A. Ask a set of questions that provide the designer with an

early assessment of design quality and lay the foundation

for more detailed analysis of the architecture

• Assess the control in an architectural design (see next slide)

• Assess the data in an architectural design (see upcoming

slide)

B. Apply the architecture trade-off analysis method

C. Assess the architectural complexity

46

APPROACH A: QUESTIONS --

ASSESSING CONTROL IN AN

ARCHITECTURAL DESIGN
 How is control managed within the architecture?

 Does a distinct control hierarchy exist, and if so, what is the

role of components within this control hierarchy?

 How do components transfer control within the system?

 How is control shared among components?

 What is the control topology (i.e., the geometric form that the

control takes)?

 Is control synchronized or do components operate

asynchronously?

47

APPROACH A: QUESTIONS -- ASSESSING

DATA IN AN ARCHITECTURAL DESIGN

 How are data communicated between components?

 Is the flow of data continuous, or are data objects passed to the system
sporadically?

 What is the mode of data transfer (i.e., are data passed from one
component to another or are data available globally to be shared
among system components)

 Do data components exist (e.g., a repository or blackboard), and if so,
what is their role?

 How do functional components interact with data components?

 Are data components passive or active (i.e., does the data component
actively interact with other components in the system)?

 How do data and control interact within the system?

48

APPROACH B: ARCHITECTURE

TRADE-OFF ANALYSIS METHOD

1) Collect scenarios representing the system from the user's point of view

2) Elicit requirements, constraints, and environment description to be certain all

stakeholder concerns have been addressed

3) Describe the candidate architectural styles that have been chosen to

address the scenarios and requirements

4) Evaluate quality attributes by considering each attribute in isolation

(reliability, performance, security, maintainability, flexibility, testability,

portability, reusability, and interoperability)

5) Identify the sensitivity of quality attributes to various architectural attributes

for a specific architectural style by making small changes in the architecture

6) Critique the application of the candidate architectural styles (from step #3)

using the sensitivity analysis conducted in step #5

49 Based on the results of steps 5 and 6, some architecture alternatives may be

eliminated. Others will be modified and represented in more detail until a target

architecture is selected

APPROACH C: ASSESSING

ARCHITECTURAL COMPLEXITY
 The overall complexity of a software architecture can be

assessed by considering the dependencies between
components within the architecture

 These dependencies are driven by the information and control
flow within a system

 Three types of dependencies

 Sharing dependency U      V

 Represents a dependency relationship among consumers who use the
same source or producer

 Flow dependency  U  V 

 Represents a dependency relationship between producers and
consumers of resources

 Constrained dependency U “XOR” V

 Represents constraints on the relative flow of control among a set of
activities such as mutual exclusion between two components

50

SUMMARY

 A software architecture provides a uniform, high-level view of the
system to be built

 It depicts

 The structure and organization of the software components

 The properties of the components

 The relationships (i.e., connections) among the components

 Software components include program modules and the various
data representations that are manipulated by the program

 The choice of a software architecture highlights early design
decisions and provides a mechanism for considering the benefits of
alternative architectures

 Data design translates the data objects defined in the analysis
model into data structures that reside in the software

51

(More on next slide)

SUMMARY (CONTINUED)

 A number of different architectural styles are available that
encompass a set of component types, a set of connectors, semantic
constraints, and a topological layout

 The architectural design process contains four distinct steps

1) Represent the system in context

2) Identify the component archetypes (the top-level abstractions)

3) Identify and refine components within the context of various architectural
styles

4) Formulate a specific instantiation of the architecture

 Once a software architecture has been derived, it is elaborated and
then analyzed against quality criteria

52



