
Information Security System

EC-615-F

6/30/2015 1

Lecture no 2, 3,4,5,6

Topics Covered

• Finite field of increasing importance in cryptography

• AES, Elliptic Curve, CMAC

• concern operations on “numbers”

• where what constitutes a “number” and the type of operations varies
considerably

• start with basic number theory concepts

• divisibility, Euclidian algorithm, modular arithmetic

3

Divisors

• say a non-zero number b divides a if for some m have a=mb
(a,b,m all integers)

• that is b divides into a with no remainder

• denote this b|a

• and say that b is a divisor of a

• eg. all of 1,2,3,4,6,8,12,24 divide 24

• eg. 13 | 182; –5 | 30; 17 | 289; –3 | 33; 17 | 0

4

Properties of Divisibility
• If a|1, then a = ±1.

• If a|b and b|a, then a = ±b.

• Any b != 0 divides 0.

• If a | b and b | c, then a | c

• e.g. 11 | 66 and 66 | 198  11 | 198

• If b|g and b|h, then b|(mg + nh)

for arbitrary integers m and n

 e.g. b = 7; g = 14; h = 63; m = 3; n = 2

 hence 7|14 and 7|63  7|(3 x 14 + 2 x 63)

5

Division Algorithm

6

Greatest Common Divisor (GCD)
• a common problem in number theory

• gcd (a,b) of a and b is the largest integer that divides both a
and b

• E.g., gcd(60,24) = 12

• define gcd(0, 0) = 0, gcd(a,0) = |a| for a !=0

• often want no common factors (except 1) define such
numbers as relatively prime

• E.g. gcd(8,15) = 1

• hence 8 & 15 are relatively prime

7

Euclidean Algorithm
• A simple procedure for finding d = gcd (a, b)

• gcd(|a|, |b|) = gcd (a, b) = gcd (b, a)

• no harm to assume a >= b > 0

• Euclid(a,b)

 if (b=0) then return a;

 else return Euclid(b, a mod b);

• E.g., gcd(60,24) = 12; gcd(8,15) = 1

 8

Example GCD(1970,1066)
1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

9

GCD(1160718174, 316258250)
Dividend Divisor Quotient Remainder

a = 1160718174 b = 316258250 q1 = 3 r1 = 211943424

b = 316258250 r1 = 211943424 q2 = 1 r2 = 104314826

r1 = 211943424 r2 = 104314826 q3 = 2 r3 = 3313772

r2 = 104314826 r3 = 3313772 q4 = 31 r4 = 1587894

r3 = 3313772 r4 = 1587894 q5 = 2 r5 = 137984

r4 = 1587894 r5 = 137984 q6 = 11 r6 = 70070

r5 = 137984 r6 = 70070 q7 = 1 r7 = 67914

r6 = 70070 r7 = 67914 q8 = 1 r8 = 2516

r7 = 67914 r8 = 2516 q9 = 31 r9 = 1078

r8 = 2516 r9 = 1078 q10 = 2 r10 = 0

10

There are other GCD algorithms, but Euclidean Algorithm is very efficient!

Modular Arithmetic
• define modulo operator “a mod n” to be

remainder when a is divided by n

• where positive integer n is called the modulus

• a = qn + r 0<=r<n; q=floor(a/n)

• a = floor(a/n) * n + (a mod n)

• e.g, 11 mod 7 = 4; -11 mod 7 = 3

• a and b are congruent modulo n if: a mod n = b
mod n

• when divided by n, a & b have same remainder

• a ≡ b (mod n), eg. 100 ≡ 34 mod 11 11

Modular Arithmetic Operations

• (mod n) operator maps all integers into the set

Zn = {0, 1, . . . , (n – 1)}

• can perform arithmetic operations within the confines of this set
 modular arithmetic

• Rules for addition, subtraction, and multiplication carry over into
modular arithmetic

12

Properties of Modular Arithmetic Operations

1.[(a mod n) + (b mod n)] mod n = (a + b)
mod n

2.[(a mod n) – (b mod n)] mod n = (a – b)
mod n

3.[(a mod n) x (b mod n)] mod n = (a x b)
mod n

e.g.

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2 (11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) – (15 mod 8)] mod 8 = –4 mod 8 = 4 (11 – 15) mod 8 = –4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5 (11 x 15) mod 8 = 165 mod 8 = 5

13

Modulo 8 Addition in Z8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6
14

The matrix is symmetric about

the main diagonal

Additive inverse exists to each

integer in modular addition:

(x+y) mod 8 = 0

Modulo 8 Multiplication in Z8

+ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1 15

The matrix is symmetric about

the main diagonal

Multiplicative inverse exists to

some integers in mod 8

multiplication:

(x * y) mod 8 = 1

Residue Classes (mod n)

• (mod n) operator maps all integers into the set

 Zn = {0, 1, . . . , (n – 1)}  set of residues, or residue classes

• Each integer in Zn represents a residue class

 [r] = {a: a is an integer, a ≡ r (mod n) }

 e.g., the residue classes (mod 4) are:

 [0] = {..., - 16, - 12, - 8, - 4, 0, 4, 8, 12, 16, ...}

 [1] = {..., - 15, - 11, - 7, - 3, 1, 5, 9, 13, 17, ...}

 [2] = {..., - 14, - 10, - 6, - 2, 2, 6, 10, 14, 18, ... }

 [3] = {..., - 13, - 9, - 5, - 1, 3, 7, 11, 15, 19, ... }

• Finding the smallest nonnegative integer to which k is
congruent modulo n is called reducing k modulo n

 16

Properties of Modular Arithmetic
for Integers in Zn

17

Modular Arithmetic Special Properties

• if (a + b) ≡ (a + c) (mod n) then b ≡ c (mod n)

• e.g., (5 + 23) ≡ (5 + 7) (mod 8)  23 ≡ 7(mod 8)

• due to the existence of additive inverse

• add additive inverse –a to both sides to prove

• if (a * b) ≡ (a * c) (mod n) then b ≡ c (mod n) if a is
relatively prime to n

• e.g., (5 * 23) ≡ (5 * 7) (mod 8)  23 ≡ 7(mod 8)

• if multiplicative inverse exists for a mod n

• normally, if an integer is relatively prime to n, then this integer
has a multiplicative inverse in Zn

18

Extended Euclidean Algorithm

• calculates not only GCD but x & y (with opposite signs):
ax + by = d = gcd(a, b)

• useful for later crypto computations, e.g, RSA

• follow sequence of divisions for GCD but assume at each
step i, can find x & y:

r = ax + by

• at end find GCD value and also x & y

19

