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Lecture no 2, 3,4,5,6 



Topics Covered 

 

• Finite field of increasing importance in cryptography 

• AES, Elliptic Curve, CMAC 

• concern operations on “numbers” 

• where what constitutes a “number” and the type of operations varies 
considerably 

• start with basic number theory concepts 

• divisibility, Euclidian algorithm, modular arithmetic 
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Divisors 

• say a non-zero number b divides a if for some m have a=mb 
(a,b,m all integers)  

• that is b divides into a with no remainder  

• denote this b|a  

• and say that b is a divisor of a  

• eg. all of 1,2,3,4,6,8,12,24 divide 24  

• eg. 13 | 182; –5 | 30; 17 | 289; –3 | 33; 17 | 0  
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Properties of Divisibility 
•  If a|1, then a = ±1. 

•  If a|b and b|a, then a = ±b. 

•  Any b != 0 divides 0.  

• If a | b and b | c, then a | c  

• e.g. 11 | 66 and 66 | 198  11 | 198 

• If b|g and b|h, then b|(mg + nh) 

for arbitrary integers m and n 

 e.g. b = 7; g = 14; h = 63; m = 3; n = 2 

 hence 7|14 and 7|63  7|(3 x 14 + 2 x 63)  
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Division Algorithm 
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Greatest Common Divisor (GCD) 
• a common problem in number theory 

• gcd (a,b) of a and b is the largest integer that divides both a 
and b  

• E.g.,  gcd(60,24) = 12 

• define gcd(0, 0) = 0,  gcd(a,0) = |a| for a !=0 

• often want no common factors (except 1) define such 
numbers as relatively prime 

• E.g. gcd(8,15) = 1 

• hence 8 & 15 are relatively prime  
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Euclidean Algorithm 
• A simple procedure for finding d = gcd (a, b) 

• gcd(|a|, |b|) = gcd (a, b) = gcd (b, a) 

• no harm to assume a >= b > 0  

 

• Euclid(a,b)   

 if (b=0) then return a;  

 else return Euclid(b, a mod b); 

 

• E.g.,  gcd(60,24) = 12;  gcd(8,15) = 1 
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Example GCD(1970,1066) 
1970 = 1 x 1066 + 904  gcd(1066, 904) 

1066 = 1 x 904 + 162  gcd(904, 162) 

904 = 5 x 162 + 94   gcd(162, 94) 

162 = 1 x 94 + 68   gcd(94, 68) 

94 = 1 x 68 + 26   gcd(68, 26) 

68 = 2 x 26 + 16   gcd(26, 16) 

26 = 1 x 16 + 10   gcd(16, 10) 

16 = 1 x 10 + 6   gcd(10, 6) 

10 = 1 x 6 + 4   gcd(6, 4) 

6 = 1 x 4 + 2   gcd(4, 2) 

4 = 2 x 2 + 0   gcd(2, 0) 
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GCD(1160718174, 316258250) 
Dividend Divisor Quotient Remainder   

a = 1160718174 b = 316258250 q1 = 3  r1 = 211943424   

b = 316258250 r1 = 211943424 q2 = 1  r2 = 104314826   

r1 = 211943424 r2 = 104314826 q3 = 2  r3 = 3313772   

r2 = 104314826 r3 = 3313772  q4 = 31 r4 = 1587894   

r3 = 3313772  r4 = 1587894  q5 = 2  r5 = 137984    

r4 = 1587894  r5 = 137984  q6 = 11 r6 = 70070   

r5 = 137984  r6 = 70070  q7 = 1  r7 = 67914  

r6 = 70070  r7 = 67914  q8 = 1  r8 = 2516   

r7 = 67914  r8 = 2516  q9 = 31 r9 = 1078   

r8 = 2516  r9 = 1078  q10 = 2 r10 = 0  
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There are other GCD algorithms, but Euclidean Algorithm is very efficient! 



Modular Arithmetic 
• define modulo operator “a mod n” to be 

remainder when a is divided by n 

• where positive integer n is called the modulus 

• a = qn + r      0<=r<n; q=floor(a/n) 

• a = floor(a/n) * n + (a mod n)  

• e.g, 11 mod 7 = 4;   -11 mod 7 = 3 

 

• a and b are congruent modulo n if:  a mod n = b 
mod n  

• when divided by n, a & b have same remainder  

• a ≡ b (mod n),    eg. 100 ≡ 34 mod 11  11 



Modular Arithmetic Operations 

• (mod n) operator maps all integers into the set 

Zn   =  {0, 1, . . . , (n – 1)} 

 

• can perform arithmetic operations within the confines of this set 
 modular arithmetic 

 

• Rules for addition, subtraction, and multiplication carry over into 
modular arithmetic 
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Properties of Modular Arithmetic Operations 

1.[(a mod n) + (b mod n)] mod n = (a + b) 
mod n   

2.[(a mod n) – (b mod n)] mod n = (a – b) 
mod n   

3.[(a mod n) x (b mod n)] mod n = (a x b) 
mod n 

e.g. 

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2 (11 + 15) mod 8 = 26 mod 8 = 2 

[(11 mod 8) – (15 mod 8)] mod 8 = –4 mod 8 = 4 (11 – 15) mod 8 = –4 mod 8 = 4  

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5 (11 x 15) mod 8 = 165 mod 8 = 5 
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Modulo 8 Addition in Z8 

+ 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 2 3 4 5 6 7 0 

2 2 3 4 5 6 7 0 1 

3 3 4 5 6 7 0 1 2 

4 4 5 6 7 0 1 2 3 

5 5 6 7 0 1 2 3 4 

6 6 7 0 1 2 3 4 5 

7 7 0 1 2 3 4 5 6 
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The matrix is symmetric about 

the main diagonal 

 

 

Additive inverse exists to each 

integer in modular addition: 

(x+y) mod 8 = 0 



Modulo 8 Multiplication in Z8 

+ 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 

2 0 2 4 6 0 2 4 6 

3 0 3 6 1 4 7 2 5 

4 0 4 0 4 0 4 0 4 

5 0 5 2 7 4 1 6 3 

6 0 6 4 2 0 6 4 2 

7 0 7 6 5 4 3 2 1 15 

The matrix is symmetric about 

the main diagonal 

 

Multiplicative inverse exists to 

some integers in mod 8 

multiplication: 

(x * y) mod 8 = 1 



Residue Classes (mod n) 

• (mod n) operator maps all integers into the set 

 Zn   =  {0, 1, . . . , (n – 1)}   set of residues, or residue classes 

• Each integer in Zn represents a residue class 

       [r] = {a: a is an integer, a ≡ r (mod n) } 

       e.g., the residue classes ( mod 4) are:     

        [0] = {..., - 16, - 12, - 8, - 4, 0, 4, 8, 12, 16, ...} 

        [1] = {..., - 15, - 11, - 7, - 3, 1, 5, 9, 13, 17, ...} 

        [2] = {..., - 14, - 10, - 6, - 2, 2, 6, 10, 14, 18, ... } 

        [3] = {..., - 13, - 9, - 5, - 1, 3, 7, 11, 15, 19, ... }  

• Finding the smallest nonnegative integer to which k is 
congruent modulo n is called reducing k modulo n 
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Properties of Modular Arithmetic 
for Integers in Zn 
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Modular Arithmetic Special Properties 

• if ( a + b) ≡ ( a + c) ( mod n)  then b ≡ c  ( mod n)  

• e.g., ( 5 + 23) ≡ ( 5 + 7) ( mod 8)   23 ≡ 7( mod 8) 

• due to the existence of additive inverse  

• add additive inverse –a to both sides to prove 

 

• if (a * b) ≡ (a * c) (mod n) then b ≡ c (mod n) if a is 
relatively prime to n 

• e.g., ( 5 * 23) ≡ ( 5 * 7) ( mod 8)   23 ≡ 7( mod 8) 

• if multiplicative inverse exists for a mod n 

• normally, if an integer is relatively prime to n, then this integer 
has a multiplicative inverse in Zn 
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Extended Euclidean Algorithm 

• calculates not only GCD but x & y (with opposite signs):  
ax + by = d = gcd(a, b) 

• useful for later crypto computations, e.g, RSA 

• follow sequence of divisions for GCD but assume at each 
step i, can find x & y: 

r = ax + by 

• at end find GCD value and also x & y 
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