Digital Signal Processing- Lecture 19

Topics to be covered:

Fractional Sampling rate filter

Poly-phase Structure of Fractional Sampling Rate Filter

$$H(z) = z^{-2}F_0(z^3) + z^{-1}F_1(z^3) + F_2(z^3)$$

Poly-phase Structure of Fractional Sampling Rate Filter

$$H(z) = z^{-2}F_0(z^3) + z^{-1}F_1(z^3) + F_2(z^3)$$

Poly-phase Structure of Fractional Sampling Rate Filter

$$H(z) = z^{-2}F_0(z^3) + z^{-1}F_1(z^3) + F_2(z^3)$$

Poly-phase Structure of Fractional Sampling Rate Filter $H(z) = z^2 F_0(z^3) + z^1 F_1(z^3) + F_2(z^3)$

Poly-phase Structure of Fractional Sampling Rate Filter $H(z) = z^2 F_0(z^3) + z^1 F_1(z^3) + F_2(z^3)$

Poly-phase Structure of Fractional Sampling Rate Filter $H(z) = z^2 F_0(z^3) + z^4 F_1(z^3) + F_2(z^3)$

Efficient Design for Very Narrow-band Filters

$$x[n] \longrightarrow F(z) \longrightarrow G(z^M) \longrightarrow y[n]$$

Efficient Design for Very Narrow-band Filters

Efficient Design for Very Narrow-band Filters

Multi-stage Decimation System

13

Multi-stage Decimation System

Multi-stage Interpolation System

$$x[n] \longrightarrow \uparrow L_2 \longrightarrow G(z) \longrightarrow \uparrow L_1 \longrightarrow F(z) \longrightarrow y[n]$$

Multi-stage Interpolation System

