Digital Signal
Processing- Lecture 11




Topics to be covered:

o0 Inverse Z transform




furst order discrete system. Let y(1) = money i an account at the start of the n-th
compounding period , and let p be the interest rate (per compounding period) . If xn) 15 the
deposit made at the start of the n-th period then the amount i the account at the start of the
next period 15 given by

y(n) =(1+ p)y(n=1)+x(n)

Assume that y(n) =0 for n < 0 and x(n) = 0 for n < (, then take the z-transform of this
equation to get

F(2)= (1 pT(e)+ X(2) = Ho) =)

-1

where a=1+p and ‘z‘::-ler

l-az

Obviously an investor would rather know y(n) than 17z).
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Thus relies directly on the definition of the z-transform and 1s useful 1f the first few terms mn the
sequence are required. The 1dea 1s to expand the z transform as power sertes in z and then use

the definition to read off the successive values of the signal.

For example 1f , in the example above, only one deposit was made, at say n = 0, then




Then dividing the numerator into the denominator repeatedly yields

ltaz ' +a’z7 +--

z—a):z
Z—a

O0+a

azl—a’z?

0 + a'z™

so that ¥(z)=x(0)(z™° +az" +a’z™ +---). Comparing this with the definition

Y(2)=v(0)z + v(Dz+ v(2)z7 +- -

leads to 1(0)=x(0), v(1)=ax(0). v(2)=a’x(0), ---which is the well known compound
interest result spelt out in laborious detail.




Inversion by Partial Fraction
Expansion

Sequences with rational z-transforms are rather stereotyped. mostly involving combinations of
a limited number of standard forms. This makes it feasible to invert the z-transform by
expanding it as a suun of simple terms, each of which has a known mverse. Thus the inversion
process 1s one of reduction to a standard form followed by table look-up and often copious
algebra.

For example, consider a causal second order system

v(n)—2acosby(n—1+a’v(n—2)=x(n)




has transter function

1 z?
H(z)= = ozl a
(2) 1-2-""acosB+a’z"  z*—2zacosB+a’ | |

The first step 1s to reduce the ratio to a proper fraction, which is most conveniently done here
by dividing both sides by z. Then the denominator 1s factored.

z
(z—ae®)z—ae™)

e

Lai)=
2

Then we attempt to write the fraction in the form

z C, C,

(z—ad®)z—ae™) (z—ae®) (z—ae™)

where Cq and C» are constants. Note that this expression must hold for all = so we can choose

any particular value of z that makes it easy to calculate the constants. Suppose we multiply
both sides by (z —ae™)




(z—ae”):z e - (z—ae®)C,

(z—ae® W z—ae ™) = (z—ae™ ™)

The LHS of this expression simplifies. so

i N (z —ae”)C,

(z—ae™) -G (z—ae™™)

and if we choose = =ae” the second term disappears. provided
(e 2e™ ie. " #1 or O =/kn) and we get

ae” e’

C, = — =
Yoa(e® —e ™) 2isin®

Similarly multiplying both sides by (z —ae™) and choosing =z = ae™” leads to

—if

CEZ

a(e™® —e®) 2isin®

2isinB

it -6
Then H(z)= ! [ =€ =€ ] : |z|:=-a

(z —ae™) ) (z—ae™)




But, from the examples of the z-transform given earlier

u(n)a" <> - ‘z‘::-|ct|
I—a

so that

h(ﬁ':l _ 1 - [H(H)H”thﬂja . y(”}ane—j{nﬂ}ﬁ) — H(H:]G"

2isimn

sin((n —I—l)ﬁ) O

sin 0




General method

The example above can be generalised to the case of proper rational fractions whose

denominators do not have repeated roots, ie to cases where H(z) = % where O and P are
z

polynomials and the order of O 1s less than that of P and the solutions of P(z)=0 are all

N
distinct The trick is to write P(z) = H (z— p,) (assume the coefficient of " in P is one).

Then try wnting H(z)=———— o) i
H{Z p) 1 (z— PJ;)

Now (z—p, )H(z)= Q{z) =C, +(z—p, )i

H(Z_pt im(z-p.)

and 1f none of the denominators in the sum 1s equal to (z — p, ) then if we put (z = p, ) the
last term 1s zero and then

op,)
11— P

C =

n=123---N.




Non repeated root examnles

The third order causal system
v(n)—025y(n—-1)+025v(n—2)-00625y(n—3)=x(n)
has the transfer function

1
1-025z7"+02527 - 0.0625z~

H(z)=

: |z| =05

which 1s equivalent to

3
=

Hiz)=
(2) - — 02527 + 0252 - 0.0625

Reduce this to a proper fraction by dividing both sides by z and factor the denominator (this
usually needs to be done numerically),

lhe-——=
z (z—i0.5)(z +i05)z—-025)

Since the roots are all distinct the PFE of this 1s




The Impuse response is:

h(i) = 044770436 (0.57)" +0.4472°%% (—0.57)" + 0.8(025)" : n=0

This expression 1s real since the second term is the complex conjugate of the first. It can be
simplified a little by writing

I-:I'I _ ejnnﬂ
whence

h(n)= 2Re[e““ﬁ‘“-““}]ﬂ.aw{ﬂ.s)” +08(025)"

_ 0894cos(nm/2-04636) , 08
- 2H 22!

=0







Rational systems with repeated

1

Y=y

the PFE is taken to be of the form

e G . G G
(z=2) (z—-1) (z-1)

The coefficients C1 and C»~ can be calculated using the usual trick: Multiply both sides by
(z—2) to get

. N (z-2)G, (z-2)C,
(z 2})1'{2}—(2_1)2 =C + -1 + =

and then set z =2 to get

1

q:(z—lf =1




dz (z—=2) dz| (z-2)

_(z-D2¢-2- (DG
(z-2)°

dE-X@)|_ -1 _d{(z—l)zq

+(z-DCy + C:ﬂ:|

+ G,

and then take z =1

_d[(z—lf,r(z)ﬂ a1
- d- C(1-2)

z=]

1

Thus the final PFE 1s

1 1 1

YO ey ey

which may be checked by reducing the expression to a common denonunator.




The general case of a k-th order pole 1s easily, if tediously. handled by similar methods.
If one of the poles (say p,,) in the proper fraction X(z) 1s of k-th order then

X(2)= Q{i)w
(z=p,) P(2)

where ﬁ(z) 1s a polynomial whose roots do not include p, .

The PFE 1s then written

X(z)= Co Con +ot Cont —E—+ 4(2)

_|_
(z=pn) CE—pu) (z=pn)

where A(z) contains terms which do not involve p,_ . Multiply by (z - p,)*

(z—p, ) X(2)= %— G- p )AL (D) 4k oyt (2= ) A(2)




A=)

ifferentiate n times 1 < k then set 2= p_to see hat

R —qv@@} G,

%

=P,

&

P(z) -
The expresston on the right will be finite because all the poles at = p_ have been removed.

(The term 1 A(z) can be also shown not to contribute to the fimal expression since it contams
nopolesat z=p )




Thus the set of PFE coeftictents for a pole of order k are given by

1

m(k—n ?Tlfiz

[(z pm)*X(z)] n=012k-1

=P

(Note : the zeroth dertvative of a function is just the function itself.)




Repeated roots PFE Example

Consider the causal system described by the difference equation
() =5v(n-1)+9v(n-2)-Ty(n-3)+2y(n—4)=x(n)
The transfer function is

1 7
Hiz)= —
(2) 1-5z1+9:z2 -7 +227% -5+ 92 7242

Fortunately the denominator factors, thus :

4

. Z
C(z-D(z-2)

H(z)

and it 1s clear that for a causal system the ROC 1s |z| > 2 and the system 1s unstable.
We reduce the RHS to a proper fraction by dividing by z. Then the PFE is of the form




H() C”-|-CI1+C133+02
(z-1) (-1 (z=1y (z-2)

Using the non-repeated roots expression for the coefficient C gives

o1 2]
2 {(‘E ) H(E)L - Lz Iy l -

The repeated roots expression 1s then used for the other three coefficients

ES

: 1 _ _
G, =(z-1) EH(E).-,-:l = (E_Z)FI =




