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 Congestion control and routing are major 
issues to be handled in Wide Area Networks . 

 Congestion is handled at transport layer and 
routing is handled at network layer. 
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 When one part of the subnet (e.g. one or more routers in an 

area) becomes overloaded, congestion results.  

 Because routers are receiving packets faster than they can 

forward them, one of two things must happen:  

 The subnet must prevent additional packets from entering 

the congested region until those already present can be 

processed.  

 The congested routers can discard queued packets to make 

room for those that are arriving.  
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 Packet arrival rate exceeds the outgoing 

link capacity. 

 Insufficient memory to store arriving 

packets 

 Bursty traffic 

 Slow processor 
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 Congestion control is a global issue – 

involves every router and host within the 

subnet 

 Flow control – scope is point-to-point; 

involves just sender and receiver. 
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 Congestion Control is concerned with efficiently using a network at 

high load. 

 Several techniques can be employed. These include: 

 Warning bit 

 Choke packets 

 Load shedding 

 Random early discard 

 Traffic shaping 

 The first 3 deal with congestion detection and recovery. The last  2 

deal with congestion avoidance. 
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 A special bit in the packet header is set by the router to 

warn the source when congestion is detected. 

 The bit is copied and piggy-backed on the ACK and sent 

to the sender. 

 The sender monitors the number of ACK packets it 

receives with the warning bit set and adjusts its 

transmission rate accordingly. 
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 A more direct way of telling the source to slow down. 

 A choke packet is a control packet generated at a congested 

node and transmitted to restrict traffic flow. 

 The source, on receiving the choke packet must reduce its 

transmission rate by a certain percentage. 

 An example of a choke packet is the ICMP Source Quench 

Packet 
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 Over long distances or at high speeds choke 

packets are not very effective.  

 A more efficient method is to send to choke 

packets hop-by-hop. 

 This requires each hop to reduce its transmission 

even before the choke packet arrive at the 

source. 
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 When buffers become full, routers simply discard packets. 

 Which packet is chosen to be the victim depends on the 

application and on the error strategy used in the data link layer.  

 For a file transfer, for, e.g. cannot discard older packets since this 

will cause a gap in the received data. 

 For real-time voice or video it is probably better to 

 throw away old data and keep new packets.  

 Get the application to mark packets with discard priority. 
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 This is a proactive approach in which the router discards 

one or more packets before the buffer becomes 

completely full. 

 Each time  a packet arrives, the RED algorithm computes 

the average queue length, avg. 

 If avg is lower than some lower threshold, congestion is 

assumed to be minimal or non-existent and the packet is 

queued. 
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 If avg is greater than some upper 
threshold, congestion is assumed to be 
serious and the packet is discarded. 

 If avg is between the two thresholds, this 
might indicate the onset of congestion. 
The probability of congestion is then 
calculated. 

13 



 Another method of congestion control is to 

“shape” the traffic before it enters the network. 
 Traffic shaping controls the rate at which 

packets are sent (not just how many). Used in 
ATM and Integrated Services networks.  

 At connection set-up time, the sender and 
carrier negotiate a traffic pattern (shape). 
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Moving information across the network from 
a source to a destination, typically through  
intermediate node(s).  It consists of: 
 

 Determining optimal routing paths 
 

 Transporting information (e.g. grouped in 
packets, cells in packet switching)  
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 Routing protocols use routing algorithms to 

populate routing tables, which contain the route 

information such as  

 destination/next hop association 

 desirability of a path, and other 

 Routers build a picture of network topology 

based on routing information received from 

other routers  
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 In a weighted graph, each edge has an associated numerical value, 
called the weight of the edge 

 Edge weights may represent, distances, costs, etc. 
 Example: 

 In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports 
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 Given a weighted graph and two vertices u and v, we want to find a path 
of minimum total weight between u and v. 

 Length of a path is the sum of the weights of its edges. 
 Example: 

 Shortest path between Providence and Honolulu 
 Applications 

 Internet packet routing  

 Flight reservations 

 Driving directions 
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Property 1: 
 A subpath of a shortest path is itself a shortest path 
Property 2: 
 There is a tree of shortest paths from a start vertex to all the other vertices 
Example: 
 Tree of shortest paths from Providence 
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 The distance of a vertex v 
from a vertex s is the 
length of a shortest path 
between s and v 

 Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s 

 Assumptions: 

 the graph is connected 

 the edges are undirected 

 the edge weights are 
nonnegative 

 We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices 

 We store with each vertex v a label 
d(v) representing the distance of v 
from s in the subgraph consisting 
of the cloud and its adjacent 
vertices 

 At each step 

 We add to the cloud the vertex u 

outside the cloud with the smallest 
distance label, d(u) 

 We update the labels of the 
vertices adjacent to u  
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Find shortest path from s to t. 
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 A priority queue stores 
the vertices outside the 
cloud 
 Key: distance 

 Element: vertex 
 Locator-based methods 

 insert(k,e) returns a 
locator  

 replaceKey(l,k) changes 
the key of an item 

 We store two labels with 
each vertex: 
 Distance (d(v) label) 

 locator in priority queue 

40 

Algorithm DijkstraDistances(G, s) 

 Q  new heap-based priority queue 

 for all  v  G.vertices() 

  if  v = s 

   setDistance(v, 0) 

  else  

   setDistance(v, ) 

  l  Q.insert(getDistance(v), v) 

 setLocator(v,l) 

while  Q.isEmpty() 

 u  Q.removeMin()  

 for all  e  G.incidentEdges(u) 

  { relax edge e } 

  z  G.opposite(u,e) 

  r  getDistance(u) + weight(e) 

  if  r < getDistance(z) 

   setDistance(z,r) 

    Q.replaceKey(getLocator(z),r) 



 Dijkstra’s algorithm is based on the greedy method. It 
adds vertices by increasing distance. 
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 Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed. 

 When the previous node, D, on the 
true shortest path was considered, 
its distance was correct. 

 But the edge (D,F) was relaxed at 
that time! 

 Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex. 



 Congestion and routing are two main areas of 
WAN which can help us to improve network 
performance. 

 With congestion control, delay in packet 
delivery can be reduced to much extent. 

 With optimal algorithms for routing, best 
possible routes can give much better network 
performance and faster delivery of packets. 
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 Traffic management in wireless networks 
 Route optimization in IPv6 
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