
Routing & Congestion Control

 Congestion Control
 Factors that Cause Congestion
 Congestion Control vs Flow Control
 Warning Bit
 Hop-by-Hop Choke Packets
 Load Shedding
 Random Early Discard (RED)
 Traffic Shaping
 What is Routing?
 Path Determination
 Shortest Path Problem
 Dijkstra’s Algorithm

 Congestion control and routing are major
issues to be handled in Wide Area Networks .

 Congestion is handled at transport layer and
routing is handled at network layer.

3

 When one part of the subnet (e.g. one or more routers in an

area) becomes overloaded, congestion results.

 Because routers are receiving packets faster than they can

forward them, one of two things must happen:

 The subnet must prevent additional packets from entering

the congested region until those already present can be

processed.

 The congested routers can discard queued packets to make

room for those that are arriving.

4

 Packet arrival rate exceeds the outgoing

link capacity.

 Insufficient memory to store arriving

packets

 Bursty traffic

 Slow processor

5

 Congestion control is a global issue –

involves every router and host within the

subnet

 Flow control – scope is point-to-point;

involves just sender and receiver.

6

 Congestion Control is concerned with efficiently using a network at

high load.

 Several techniques can be employed. These include:

 Warning bit

 Choke packets

 Load shedding

 Random early discard

 Traffic shaping

 The first 3 deal with congestion detection and recovery. The last 2

deal with congestion avoidance.

7

 A special bit in the packet header is set by the router to

warn the source when congestion is detected.

 The bit is copied and piggy-backed on the ACK and sent

to the sender.

 The sender monitors the number of ACK packets it

receives with the warning bit set and adjusts its

transmission rate accordingly.

8

 A more direct way of telling the source to slow down.

 A choke packet is a control packet generated at a congested

node and transmitted to restrict traffic flow.

 The source, on receiving the choke packet must reduce its

transmission rate by a certain percentage.

 An example of a choke packet is the ICMP Source Quench

Packet

9

 Over long distances or at high speeds choke

packets are not very effective.

 A more efficient method is to send to choke

packets hop-by-hop.

 This requires each hop to reduce its transmission

even before the choke packet arrive at the

source.

10

 When buffers become full, routers simply discard packets.

 Which packet is chosen to be the victim depends on the

application and on the error strategy used in the data link layer.

 For a file transfer, for, e.g. cannot discard older packets since this

will cause a gap in the received data.

 For real-time voice or video it is probably better to

 throw away old data and keep new packets.

 Get the application to mark packets with discard priority.

11

 This is a proactive approach in which the router discards

one or more packets before the buffer becomes

completely full.

 Each time a packet arrives, the RED algorithm computes

the average queue length, avg.

 If avg is lower than some lower threshold, congestion is

assumed to be minimal or non-existent and the packet is

queued.

12

 If avg is greater than some upper
threshold, congestion is assumed to be
serious and the packet is discarded.

 If avg is between the two thresholds, this
might indicate the onset of congestion.
The probability of congestion is then
calculated.

13

 Another method of congestion control is to

“shape” the traffic before it enters the network.
 Traffic shaping controls the rate at which

packets are sent (not just how many). Used in
ATM and Integrated Services networks.

 At connection set-up time, the sender and
carrier negotiate a traffic pattern (shape).

14

Moving information across the network from
a source to a destination, typically through
intermediate node(s). It consists of:

 Determining optimal routing paths

 Transporting information (e.g. grouped in
packets, cells in packet switching)

15

 Routing protocols use routing algorithms to

populate routing tables, which contain the route

information such as

 destination/next hop association

 desirability of a path, and other

 Routers build a picture of network topology

based on routing information received from

other routers

16

17

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

 In a weighted graph, each edge has an associated numerical value,
called the weight of the edge

 Edge weights may represent, distances, costs, etc.
 Example:

 In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

18

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

 Given a weighted graph and two vertices u and v, we want to find a path
of minimum total weight between u and v.

 Length of a path is the sum of the weights of its edges.
 Example:

 Shortest path between Providence and Honolulu
 Applications

 Internet packet routing

 Flight reservations

 Driving directions

19

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Property 1:
 A subpath of a shortest path is itself a shortest path
Property 2:
 There is a tree of shortest paths from a start vertex to all the other vertices
Example:
 Tree of shortest paths from Providence

20

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

 The distance of a vertex v
from a vertex s is the
length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:

 the graph is connected

 the edges are undirected

 the edge weights are
nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

 We store with each vertex v a label
d(v) representing the distance of v
from s in the subgraph consisting
of the cloud and its adjacent
vertices

 At each step

 We add to the cloud the vertex u

outside the cloud with the smallest
distance label, d(u)

 We update the labels of the
vertices adjacent to u

21

Find shortest path from s to t.

22

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

23

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 

 
 

 

 

 

 

 0

 distance label

S = { }

Q = { s, 2, 3, 4, 5, 6, 7, t }

24

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 

 
 

 

 

 

 

 0

 distance label

S = { }

Q = { s, 2, 3, 4, 5, 6, 7, t } ExtractMin()

25

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

 distance label

S = { s }

Q = { 2, 3, 4, 5, 6, 7, t } decrease key

  X

 

  X

X

26

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

 distance label

S = { s }

Q = { 2, 3, 4, 5, 6, 7, t }

  X

 

  X

X

ExtractMin()

27

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2 }

Q = { 3, 4, 5, 6, 7, t }
  X

 

  X

X

28

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2 }

Q = { 3, 4, 5, 6, 7, t }
  X

 

  X

X

decrease key

X 32

29

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2 }

Q = { 3, 4, 5, 6, 7, t }
  X

 

  X

X

X 32

ExtractMin()

30

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 6 }

Q = { 3, 4, 5, 7, t }
  X

 

  X

X

X 32

 44
X

31

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 6 }

Q = { 3, 4, 5, 7, t }
  X

 

  X

X

X 32

 44
X

ExtractMin()

32

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 6, 7 }

Q = { 3, 4, 5, t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X

33

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 6, 7 }

Q = { 3, 4, 5, t }
  X

 

  X

X

X 32

 44
X

 35 X

 59 X

ExtractMin

34

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 3, 6, 7 }

Q = { 4, 5, t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X X 51

X 34

35

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 3, 6, 7 }

Q = { 4, 5, t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X X 51

X 34

ExtractMin

36

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 3, 5, 6, 7 }

Q = { 4, t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

37

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 3, 5, 6, 7 }

Q = { 4, t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

ExtractMin

38

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 3, 4, 5, 6, 7 }

Q = { t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

39

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 3, 4, 5, 6, 7 }

Q = { t }

  X

 

  X

X

X 32

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

ExtractMin

 A priority queue stores
the vertices outside the
cloud
 Key: distance

 Element: vertex
 Locator-based methods

 insert(k,e) returns a
locator

 replaceKey(l,k) changes
the key of an item

 We store two labels with
each vertex:
 Distance (d(v) label)

 locator in priority queue

40

Algorithm DijkstraDistances(G, s)

 Q  new heap-based priority queue

 for all v  G.vertices()

 if v = s

 setDistance(v, 0)

 else

 setDistance(v, )

 l  Q.insert(getDistance(v), v)

 setLocator(v,l)

while Q.isEmpty()

 u  Q.removeMin()

 for all e  G.incidentEdges(u)

 { relax edge e }

 z  G.opposite(u,e)

 r  getDistance(u) + weight(e)

 if r < getDistance(z)

 setDistance(z,r)

 Q.replaceKey(getLocator(z),r)

 Dijkstra’s algorithm is based on the greedy method. It
adds vertices by increasing distance.

41

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct.

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

 Congestion and routing are two main areas of
WAN which can help us to improve network
performance.

 With congestion control, delay in packet
delivery can be reduced to much extent.

 With optimal algorithms for routing, best
possible routes can give much better network
performance and faster delivery of packets.

42

 Traffic management in wireless networks
 Route optimization in IPv6

43

