
Mobile Computing
Lecture 30

Windows CE 2

Contents

 Compatibility
 Windows CE 6.0 OAL Design
 Drivers

Compatibility

 Binary compatibility for applications is the key goal
 Well behaved applications will work w/ little/no changes

 Compatibility maintained through CoreDLL
 Minimize impact on Win32 APIs
 Changes hidden in API libraries

 Apps using undocumented techniques…
 Will likely have to be modified
 Such as passing handles or pointers between processes

 Main changes will be in drivers and services
 Some drivers will migrate with little work

Application Porting Test Cases

 WM 5.0 ported to Windows CE 6.0 Beta

 Running Windows CE 5.0 commercial applications
on Windows CE 6.0 Beta

Compatibility Tester

 Identifies removed / deprecated / changed APIs
 Supports both static and runtime analysis
 Produces a detail report of any issues it finds
 Includes documentation and suggestions

 Release before Windows CE 6.0 RTM
 Will allow customers to prepare ahead of time

Windows CE 6 Beta BSPs

Family BSP Kernel Will be in the beta release
(Yes/No)

ARM

Intel Mainstone III (C-Step) ARMv4i Yes

Plato VoIP Reference
Platform ARMv4i Yes

Device Emulator ARMv4i Yes

Aruba Board ARMv4i No

TI OMAP 2420 ARMv6 Yes

MIPS NEC Rockhopper SG2
Vr5500

MIPSII & II_PF, MIPSIV &
IV_FP Yes

SH4 Hitachi/Renesas Aspen SH4 Yes

x86 x86 (CEPC) X86 Yes

CodeCode TitleTitle SpeakersSpeakers

EMB321EMB321 Porting a Windows CE 5.0 BSP to the next release of Windows CEPorting a Windows CE 5.0 BSP to the next release of Windows CE Travis Hobrla; Travis Hobrla;
Don WeberDon Weber

EMB308EMB308 Windows CE Secure Boot LoaderWindows CE Secure Boot Loader Steve Steve MailletMaillet; ;
Glen LangerGlen Langer

OAL Changes

 OAL split from kernel
 Becomes “NK.EXE”
 Kernel code becomes “Kernel.DLL”

 Enables separate updates

 Overall OAL structure remains the same
 Same OEM functions
 OAL / kernel interface through shared structures

Windows CE 5.0 OAL Design

Windows CE 6.0 OAL Design

Drivers

 Two types of drivers will be supported
 Kernel Mode for performance
 User Mode for robustness

 The overall structure of the drivers remains
 Main changes are in how the drivers access client memory
 Drivers are still DLLs
 Same Stream interface

Kernel Mode Drivers

 Operate in kernel’s address space
 Calls to operating system functions very fast
 ISRs and ISTs operate in the same process space
 Thunking layer available for user interface services

 Drivers needing the best performance should be
kernel mode
 Such as those with lots of quick API calls

User Mode Drivers

 Loaded by udevices.exe
 No access to kernel structures or memory
 Same API support as applications

 Examples:
 Expansion buses like USB and SDIO

 Drivers where performance is not a factor should
consider moving to user mode
 Called less often and do more work

Porting Drivers to the New
Windows CE OS

 Most drivers become kernel mode drivers
 Driver writers must focus on security and stability

 Maximum backward-compatibility
is maintained

 Though, some driver modifications are required
 Deprecated APIs
 Asynchronous buffer access
 User Interface Handling

Caller Process Mapping (5.0)

Slot 31 CloneSlot 31 Clone

Slot 2Slot 2

Slot 3Slot 3

.

.

.

0000 0000

0200 0000

0400 0000

0600 0000

3E00 0000

4000 0000

4200 0000

FileSys
Device Mgr

Slot 32Slot 32

Application (Slot 31)Application (Slot 31)

Slot 3 CloneSlot 3 Clone

Slot 2Slot 2
Slot 3Slot 3

.

.

.

FileSys
Device Mgr

Slot 32Slot 32

Slot 31Slot 31

At call to DeviceIoControl When DeviceIoControl processed

Caller Process Mapping (6.0)

Application

Kernel

Application

Kernel

Kernel
Drivers

Kernel
Drivers

Before Call During Call

Application
space visible
to application

Application
Space visible
to driver

Kernel
space visible
to driver

Kernel
space hidden
from application

Handling Calls

 App memory already mapped correctly
 Can access it without re-mapping pointers

 Marshalling Helper Library
 Provides APIs for handling user data

 Deprecated APIs:
 SetProcPermissions, MapPtrToProcess, MapCallerPointer, …

Driver Pointer Safety

 OS checks buffers referenced by caller parameters
 Buffers are accessed checked

 Embedded pointers are valid but not access checked
 Safe drivers should use

CeMapCallerPointer / CeCloseCallerBuffer
 Paranoid drivers should force duplication of buffer

Asynchronous Access

 Windows CE 6 forces new treatment of
asynchronous access from driver to application

 Old:
 SetProcPermissions to change thread access rights

 New:
 CeAllocAsynchronousBuffer / CeFreeAsynchronousBuffer to

marshal data

Summary

 Great new architecture
 Removes the old limits
 Performance expected as good as current

 Memory footprint similar

 OAL / Driver porting fairly straightforward

