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Compatibility 

 Binary compatibility for applications is the key goal
 Well behaved applications will work w/ little/no changes 

 Compatibility maintained through CoreDLL
 Minimize impact on Win32 APIs
 Changes hidden in API libraries

 Apps using undocumented techniques…  
 Will likely have to be modified
 Such as passing handles or pointers between processes

 Main changes will be in drivers and services
 Some drivers will migrate with little work



Application Porting Test Cases

 WM 5.0 ported to Windows CE 6.0 Beta

 Running Windows CE 5.0 commercial applications 
on Windows CE 6.0 Beta



Compatibility Tester

 Identifies removed / deprecated / changed APIs
 Supports both static and runtime analysis
 Produces a detail report of any issues it finds
 Includes documentation and suggestions

 Release before Windows CE 6.0 RTM
 Will allow customers to prepare ahead of time



Windows CE 6 Beta BSPs

Family BSP Kernel Will be in the beta release 
(Yes/No)

ARM

Intel Mainstone III (C-Step) ARMv4i Yes

Plato VoIP Reference 
Platform ARMv4i Yes

Device Emulator ARMv4i Yes

Aruba Board ARMv4i No

TI OMAP 2420 ARMv6 Yes

MIPS NEC Rockhopper SG2 
Vr5500

MIPSII & II_PF, MIPSIV & 
IV_FP Yes

SH4 Hitachi/Renesas Aspen SH4 Yes

x86 x86 (CEPC) X86 Yes

CodeCode TitleTitle SpeakersSpeakers

EMB321EMB321 Porting a Windows CE 5.0 BSP to the next release of Windows CEPorting a Windows CE 5.0 BSP to the next release of Windows CE Travis Hobrla; Travis Hobrla; 
Don WeberDon Weber

EMB308EMB308 Windows CE Secure Boot LoaderWindows CE Secure Boot Loader Steve Steve MailletMaillet; ; 
Glen LangerGlen Langer



OAL Changes

 OAL split from kernel
 Becomes “NK.EXE”
 Kernel code becomes “Kernel.DLL”

 Enables separate updates

 Overall OAL structure remains the same
 Same OEM functions
 OAL / kernel interface through shared structures



Windows CE 5.0 OAL Design



Windows CE 6.0 OAL Design



Drivers

 Two types of drivers will be supported
 Kernel Mode for performance
 User Mode for robustness

 The overall structure of the drivers remains
 Main changes are in how the drivers access client memory
 Drivers are still DLLs
 Same Stream interface



Kernel Mode Drivers

 Operate in kernel’s address space
 Calls to operating system functions very fast
 ISRs and ISTs operate in the same process space 
 Thunking layer available for user interface services

 Drivers needing the best performance should be 
kernel mode
 Such as those with lots of quick API calls



User Mode Drivers

 Loaded by udevices.exe
 No access to kernel structures or memory
 Same API support as applications

 Examples:
 Expansion buses like USB and SDIO

 Drivers where performance is not a factor should 
consider moving to user mode
 Called less often and do more work



Porting Drivers to the New 
Windows CE OS

 Most drivers become kernel mode drivers 
 Driver writers must focus on security and stability

 Maximum backward-compatibility 
is maintained

 Though, some driver modifications are required
 Deprecated APIs 
 Asynchronous buffer access 
 User Interface Handling



Caller Process Mapping (5.0)
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Caller Process Mapping (6.0)
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Handling Calls

 App memory already mapped correctly
 Can access it without re-mapping pointers

 Marshalling Helper Library
 Provides APIs for handling user data 

 Deprecated APIs:
 SetProcPermissions, MapPtrToProcess, MapCallerPointer, …



Driver Pointer Safety

 OS checks buffers referenced by caller parameters
 Buffers are accessed checked

 Embedded pointers are valid but not access checked
 Safe drivers should use 

CeMapCallerPointer / CeCloseCallerBuffer
 Paranoid drivers should force duplication of buffer



Asynchronous Access

 Windows CE 6 forces new treatment of 
asynchronous access from driver to application

 Old: 
 SetProcPermissions to change thread access rights

 New: 
 CeAllocAsynchronousBuffer / CeFreeAsynchronousBuffer to 

marshal data



Summary

 Great new architecture
 Removes the old limits
 Performance expected as good as current

 Memory footprint similar

 OAL / Driver porting fairly straightforward 


