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Topics Covered
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 Peephole Optimizations
 Control Flow Graph - CFG



Code Optimization
REQUIREMENTS:
 Meaning must be preserved (correctness)
 Speedup must occur on average.
 Work done must be worth the effort.
OPPORTUNITIES:
 Programmer (algorithm, directives)
 Intermediate code
 Target code  
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Code Optimization

5

Scanner
(lexical
analysis)

Parser
(syntax
analysis)

Code
Optimizer

Semantic
Analysis

(IC generator)

Code
Generator

Symbol
Table

Source
language

tokens Syntactic
structure

Syntactic/semantic
structure

Target
language



Levels
 Window – peephole optimization
 Basic block
 Procedural – global (control flow graph)
 Program level – intraprocedural (program dependence 

graph)
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Peephole Optimizations
 Constant Folding   

x := 32 becomes      x := 64
x := x + 32

 Unreachable Code   
goto L2    
x := x + 1  unneeded

 Flow of control optimizations   
goto L1 becomes       goto L2
…
L1: goto L2
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Peephole Optimizations
 Algebraic Simplification   

x := x + 0  unneeded   
 Dead code   

x := 32  where x not used after statement     
y := x + y  y := y + 32

 Reduction in strength   
x := x * 2  x := x + x
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Peephole Optimizations
 Local in nature
 Pattern driven
 Limited by the size of the window
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Basic Block Level
 Common Subexpression elimination
 Constant Propagation
 Dead code elimination 
 Plus many others such as copy propagation, value 

numbering, partial redundancy elimination, …
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Simple example: a[i+1] = b[i+1]
 t1 = i+1
 t2 = b[t1]
 t3 = i + 1
 a[t3] = t2

 t1 = i + 1
 t2 = b[t1]
 t3 = i + 1     no longer live
 a[t1] = t2
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Common expression can be eliminated



 i = 4
 t1 = i+1
 t2 = b[t1]
 a[t1] = t2

 i = 4
 t1 = 5
 t2 = b[t1]
 a[t1] = t2
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Now, suppose i is a constant:

• i = 4
• t1 = 5 
• t2 = b[5]
• a[5] = t2

• i = 4
• t2 = b[5]
• a[5] = t2

Final Code:



Control Flow Graph - CFG
CFG = < V, E, Entry >, where  

V = vertices or nodes, representing an instruction or 
basic block (group of statements).      

E = (V x V) edges, potential flow of control          
Entry is an element of V, the unique program entry

Two sets used in algorithms:
 Succ(v) = {x in V| exists e in E, e = v x}
 Pred(v) = {x in V| exists e in E, e = x v}
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Definitions
 point - any location between adjacent statements 

and before and after a basic block.
 A path in a CFG from point p1 to pn is a sequence of 

points such that  j, 1 <= j < n, either pi is the point 
immediately preceding a statement and pi+1 is the 
point immediately following that statement in the 
same block, or pi is the end of some block and pi+1
is the start of a successor block.
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CFG
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c = a + b
d = a * c
i = 1

f[i] = a + b
c = c * 2
if c > d

g = a * c              g = d * d

i = i + 1
if i > 10

points

path



Optimizations on CFG
 Must take control flow into account 

 Common Sub-expression Elimination 
 Constant Propagation 
 Dead Code Elimination 
 Partial redundancy Elimination
 …

 Applying one optimization may create opportunities 
for other optimizations.
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Redundant Expressions
An expression x op y is redundant at a point p if it has 

already been computed at some point(s) and no 
intervening operations redefine x or y.

m = 2*y*z t0 = 2*y t0 = 2*y
m = t0*z m = t0*z

n = 3*y*z t1 = 3*y t1 = 3*y
n = t1*z n = t1*z

o = 2*y–z t2 = 2*y
o = t2-z o = t0-z
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Redundant Expressions
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c = a + b
d = a * c
i = 1

f[i] = a + b
c = c * 2
if c > d

g = a * c              g = d * d

i = i + 1
if i > 10

Candidates:
a + b
a * c
d * d
c * 2
i + 1

Definition site

Since a + b is
available here, 
 redundant!



Redundant Expressions
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c = a + b
d = a * c
i = 1

f[i] = a + b
c = c * 2
if c > d

g = a * c              g = d * d

i = i + 1
if i > 10

Candidates:
a + b
a * c
d * d
c * 2
i + 1

Definition site

Kill site

Not available
 Not redundant



Redundant Expressions
 An expression e is defined at some point p in the 

CFG if its value is computed at p. (definition site)
 An expression e is killed at point p in the CFG if 

one or more of its operands is defined at p. (kill 
site)

 An expression is available at point p in a CFG if 
every path leading to p contains a prior definition 
of e and e is not killed between that definition and 
p.
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Removing Redundant Expressions
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t1 = a + b
c = t1
d = a * c
i = 1

f[i] = t1
c = c * 2
if c > d

g = a * c              g = d*d

i = i + 1
if i > 10

Candidates:
a + b
a * c
d * d
c * 2
i + 1



Constant Propagation
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b = 5
c = 4*b
c > b

d = b + 2

e = a + b

b = 5
c = 20
c > 5

d = 7

e = a + 5e = a + b

tf tf

b = 5
c = 20
20 > 5

d = 7

e = a + 5

tf



Constant Propagation
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b = 5
c = 20
20 > 5

d = 7

e = a + 5

tf

b = 5
c = 20
d = 7
e = a + 5



Copy Propagation
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b = a
c = 4*b
c > b

d = b + 2

e = a + b

b = a
c = 4*a
c > a

d = a + 2

e = a + ae = a + b



Simple Loop Optimizations: Code Motion
while (i <=  limit - 2)

t := limit - 2
while (i <= t)

L1:
t1 = limit – 2
if (i > t1) goto L2
body of loop
goto L1

L2:

t1 = limit – 2
L1:

if (i > t1) goto L2
body of loop
goto L1

L2:

25



Simple Loop Optimizations: Strength 
Reduction
 Induction Variables control loop iterations
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j = j – 1
t4 = 4 * j
t5 = a[t4]
if t5 > v

j = j – 1
t4 = t4 - 4
t5 = a[t4]
if t5 > v

t4 = 4*j



Simple Loop Optimizations
 Loop transformations are often used to expose 

other optimization opportunities:
 Normalization
 Loop Interchange
 Loop Fusion
 Loop Reversal
 …
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Consider Matrix Multiplication
for i = 1 to n do

for j = 1 to n do
for k = 1 to n do

C[i,j] = C[i,j] + A[i,k] + B[k,j]
end

end
end
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Memory Usage
 For A: Elements are accessed across rows, spatial locality is 

exploited for cache (assuming row major storage)
 For B: Elements are accessed along columns, unless cache 

can hold all of B, cache will have problems.
 For C: Single element computed per loop – use register to 

hold
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Matrix Multiplication Version 2
for i = 1 to n do

for k = 1 to n do
for j = 1 to n do

C[i,j] = C[i,j] + A[i,k] + B[k,j]
end

end
end
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Memory Usage
 For A: Single element loaded for loop body
 For B: Elements are accessed along rows to exploit 

spatial locality.
 For C: Extra loading/storing, but across rows
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Simple Loop Optimizations
 How to determine safety?

 Does the new multiply give the same answer?
 Can be reversed??
for (I=1 to N) a[I] = a[I+1] – can this loop be safely 

reversed?
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Data Dependencies
 Flow Dependencies - write/read

x := 4; 
y := x + 1

 Output Dependencies - write/write
x := 4; 
x := y + 1;

 Antidependencies - read/write
y := x + 1; 
x := 4;
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x := 4
y := 6
p := x + 2
z := y + p
x := z
y := p

x := 4 y := 6

p := x + 2

z := y + p

y := p x := zFlow
Output
Anti



Global Data Flow Analysis
Collecting information about the way data is used in 

a program.
 Takes control flow into account
 HL control constructs

 Simpler – syntax driven
 Useful for data flow analysis of source code

 General control constructs – arbitrary branching
Information needed for optimizations such as: 

constant propagation, common sub-expressions, 
partial redundancy elimination …
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Dataflow Analysis: Iterative 
Techniques
 First, compute local (block level) information.
 Iterate until no changes
while change do

change = false
for each basic block

apply equations updating IN and OUT
if either IN or OUT changes, set change to 

true
end
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Live Variable Analysis
A variable x is live at a point p if there 

is some path from p where x is used 
before it is defined.

Want to determine for some variable x  
and point p  whether the value of x  
could be used along some path 
starting at p.

 Information flows backwards 
 May – ‘along some path starting at p’

37

is x live 
here?



Global Live Variable Analysis
Want to determine for some variable x and point p whether 

the value of x could be used along some path starting at p.

 DEF[B] - set of variables assigned values in B prior to any 
use of that variable

 USE[B] - set of variables used in B prior to any definition of 
that variable

 OUT[B] - variables live immediately after the block 
OUT[B] - IN[S] for all S in succ(B)

 IN[B] - variables live immediately before the block
IN[B] = USE[B]  +  (OUT[B] - DEF[B])
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d1: a = 1
d2: b = 2

d3: c = a + b
d4: d = c - a

d8: b = a + b
d9: e = c - 1

d10: a = b * d
d22: b = a - d

d5: d = b * d

d6: d = a + b
d7: e = e + 1

B1

B2

B3

B4

B5

B6

DEF=a,b
USE =

DEF=c,d
USE = a,b

DEF=
USE = b,d

DEF=d
USE = a,b,e

DEF= e
USE = a,b,c

DEF= a
USE = b,d



Global Live Variable Analysis
Want to determine for some variable x and point p whether 

the value of x could be used along some path starting at p.

 DEF[B] - set of variables assigned values in B prior to any 
use of that variable

 USE[B] - set of variables used in B prior to any definition of 
that variable

 OUT[B] - variables live immediately after the block 
OUT[B] -  IN[S] for all S in succ(B)

 IN[B] - variables live immediately before the block
IN[B] = USE[B]  (OUT[B] - DEF[B])
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IN OUT IN OUT IN OUT

B1  a,b  a,b e a,b,e

B2 a,b a,b,c,d a,b,e a,b,c,d ,e a,b,e a,b,c,d,e

B3 a,b,c,d e a,b,c,e a,b,c,d,e a,b,c,d,e a,b,c,d,e a,b,c,d,e

B4 a,b,c,e a,b,c,d,e a,b,c,e a,b,c,d,e a,b,c,e a,b,c,d,e
B5 a,b,c,d a,b,d a,b,c,d a,b,d,e a,b,c,d a,b,d,e
B6 b,d  b,d  b,d 

Block DEF USE
B1 {a,b} { }
B2 {c,d} {a,b}
B3 { } {b,d}
B4 {d} {a,b,e}
B5 {e} {a,b,c}
B6 {a} {b,d}
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OUT[B] =  IN[S] for all S in succ(B)
IN[B] = USE[B]  +  (OUT[B] - DEF[B])



42
{ }

{b,d}

{e}

{a,b,e}

{a,b,e}

{a,b,c,d,e}
{a,b,c,d,e}

{a,b,c,d,e}
{a,b,c,d}

{a,b,d,e}

{a,b,c,e}

{a,b,c,d,e}



Dataflow Analysis Problem #2: Reachability
 A definition of a variable x is a statement that may 

assign a value to x.
 A definition may reach a program point p if there 

exists some path from the point immediately following 
the definition to p such that the assignment is not 
killed along that path. 

 Concept: relationship between definitions and uses
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What blocks do definitions d2 and d4 
reach?
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d1 i = m – 1
d2 j = n

d3 i = i + 1

d4 j = j - 1

B1

B2

B3

B4 B5

d2
d4



Reachability Analysis: Unstructured 
Input
1. Compute GEN and KILL at block—level
2. Compute IN[B] and OUT[B]  for B

IN[B] = U OUT[P]      where P is a predecessor of B
OUT[B] = GEN[B] U (IN[B] - KILL[B]) 

3. Repeat step 2 until there are no changes to OUT sets
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Reachability Analysis: Step 1
For each block, compute local (block level) information 

= GEN/KILL sets
 GEN[B] = set of definitions generated by B
 KILL[B] = set of definitions that can not reach the end of 

B
This information does not take control flow between 

blocks into account.
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Reasoning about Basic Blocks
Effect of single statement: a = b + c
 Uses variables {b,c}
 Kills all definitions of {a}
 Generates new definition (i.e. assigns a value) 

of {a}

Local Analysis: 
 Analyze the effect of each instruction
 Compose these effects to derive information about 

the entire block
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Example
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d1  i = m – 1
d2  j = n
d3  a = u1

B1

B2

B3

B4

d4  i = i + 1
d5  j = j - 1

d6  a = u2

d7  i = u2

Gen = 4,5
Kill = 1,2,7

Gen = 1,2,3
Kill = 4,5,6,7

Gen = 7
Kill = 1,4Gen = 6

Kill = 3



Reachability Analysis: Step 2
Compute IN/OUT for each block in a forward 

direction. Start with IN[B] = 
 IN[B] = set of defns reaching the start of B

=  (out[P]) for all predecessor blocks in the CFG
 OUT[B] = set of defns reaching the end of B 

= GEN[B]  (IN[B] – KILL[B])

Keep computing IN/OUT sets until a fixed point is 
reached.
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Reaching Definitions Algorithm
 Input: Flow graph with GEN and KILL for each block
 Output: in[B] and out[B] for each block. 
For each block B do out[B] = gen[B], (true if in[B] = emptyset)
change := true; 
while change do begin

change := false;   
for each block B do begin     

in[B] := U out[P], where P is a predecessor of B;     
oldout = out[B];     
out[B] := gen[B] U  (in[B] - kill [B])     
if out[B] != oldout then change := true;   

end 
end 
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IN OUT

B1  1,2,3

B2  4,5

B3  6

B4  7
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IN[B] = (out[P]) for all predecessor 
blocks in the CFG
OUT[B] = GEN[B]  (IN[B] – KILL[B])

d1 i = m – 1
d2 j = n
d3 a = u1

B1

B2

B3

B4

d4 i = i + 1
d5 j = j - 1

d6 a = u2

d7 i = u2

Gen = 4,5
Kill = 1,2,7

Gen = 1,2,3
Kill = 4,5,6,7

Gen = 7
Kill = 1,4

Gen = 6
Kill = 3



I
N

OU
T

IN OUT

B
1

 1,2,3  1,2,3

B
2

 4,5 OUT[1]+OUT[
4]
= 1,2,3,7

4,5 + (1,2,3,7 
– 1,2,7) 
= 3,4,5

B
3

 6 OUT[2] = 3,4,5 6 + (3,4,5 – 3) 
= 4,5,6

B
4

 7 OUT[2]+OUT[
3]
= 3,4,5,6

7 + (3,4,5,6 – 1,4) = 
3,5,6,7
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IN[B] = (out[P]) for all predecessor 
blocks in the CFG
OUT[B] = GEN[B] + (IN[B] – KILL[B])



IN OUT IN OUT IN OUT

B1  1,2,3  1,2,3  1,2,3

B2  4,5 1,2,3,7 3,4,5 OUT[1] + OUT[4] = 
1,2,3,5,6,7

4,5 + (1,2,3,5,6,7-1,2,7) = 
3,4,5,6

B3  6 3,4,5 4,5,6 OUT[2] = 3,4,5,6 6 + (3,4,5,6 – 3) 
= 4,5,6

B4  7 3,4,5,6 3,5,6,7 OUT[2] + OUT[3] = 
3,4,5,6

7+(3,4,5,6 – 1,4) 
= 3,5,6,7
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IN[B] = (out[P]) for all predecessor 
blocks in the CFG
OUT[B] = GEN[B] + (IN[B] – KILL[B])



Forward vs. Backward
Forward flow vs. Backward flow 

Forward: Compute OUT for given IN,GEN,KILL
 Information propagates from the predecessors of a 

vertex.
 Examples: Reachability, available expressions, constant 

propagation

Backward: Compute IN for given OUT,GEN,KILL
 Information propagates from the successors of a vertex.
 Example: Live variable Analysis
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Forward vs. Backward Equations
Forward vs. backward

 Forward:
 IN[B] - process OUT[P] for all P in 

predecessors(B)
 OUT[B] = local U (IN[B] – local)

 Backward:
 OUT[B] - process IN[S] for all S in 

successor(B)
 IN[B] = local U (OUT[B] – local)
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May vs. Must
May vs. Must 

Must – true on all paths
Ex: constant propagation – variable must provably hold 

appropriate constant on all paths in order to do a substitution

May – true on some path
Ex: Live variable analysis – a variable is live if it could be used on 

some path; reachability – a definition reaches a point if it can 
reach it on some path

56



May vs. Must Equations
 May vs. Must

 May – IN[B] = (out[P]) for all P in 
pred(B) 

 Must – IN[B] = (out[P]) for all P in 
pred(B) 
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 Reachability
 IN[B] = (out[P]) for all P in pred(B) 
 OUT[B] = GEN[B] + (IN[B] – KILL[B]) 

 Live Variable Analysis
 OUT[B] = (IN[S]) for all S in succ(B)
 IN[B] = USE[B]  (OUT[B] - DEF[B])

 Constant Propagation
 IN[B] = (out[P]) for all P in pred(B) 
 OUT[B] = DEF_CONST[B]  (IN[B] – KILL_CONST[B]) 
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Discussion
 Why does this work?

 Finite set – can be represented as bit vectors
 Theory of lattices

 Is this guaranteed to terminate?
 Sets only grow and since finite in size …

 Can we find ways to reduce the number of iterations?
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Choosing visit order for Dataflow Analysis
In forward flow analysis situations, if we visit the blocks 

in depth first order, we can reduce the number of 
iterations.

Suppose definition d follows block path 3  5  19  35 
 16  23  45  4  10  17 where the block 
numbering corresponds to the preorder depth-first 
numbering.

Then we can compute the reach of this definition in 3 
iterations of our algorithm.

3  5  19  35  16  23  45  4  10  17
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