

Lecture-22

Introduction to Optimization

Topics Covered
 Introduction to Optimization
 Classifications of Optimization techniques
 Compile-Time Evaluation

Introduction

 Criterion of code optimization
 Must preserve the semantic equivalence of the

programs
 The algorithm should not be modified
 Transformation, on average should speed up the

execution of the program
 Worth the effort: Intellectual and compilation

effort spend on insignificant improvement.
Transformations are simple enough to have a

good effect 4

Introduction

 Optimization can be done in almost all phases of
compilation.

5

Front
end

Code
generator

Source
code

Inter.
code

target
code

Profile and
optimize

(user)

Loop, proc
calls, addr
calculation

improvement
(compiler)

Reg usage,
instruction

choice,
peephole opt
(compiler)

Introduction

 Organization of an optimizing compiler

6

Control
flow

analysis

Data
flow

analysis
Transformation

Code
optimizer

Classifications of Optimization
techniques

 Peephole optimization
 Local optimizations
 Global Optimizations
 Inter-procedural
 Intra-procedural

 Loop optimization

7

Factors influencing Optimization
 The target machine: machine dependent factors

can be parameterized to compiler for fine tuning
 Architecture of Target CPU:

 Number of CPU registers
 RISC vs CISC
 Pipeline Architecture
 Number of functional units

 Machine Architecture
 Cache Size and type
 Cache/Memory transfer rate

8

Themes behind Optimization
Techniques

 Avoid redundancy: something already computed
need not be computed again

 Smaller code: less work for CPU, cache, and memory!
 Less jumps: jumps interfere with code pre-fetch
 Code locality: codes executed close together in time is

generated close together in memory – increase locality
of reference

 Extract more information about code: More info –
better code generation

9

Redundancy elimination
 Redundancy elimination = determining that two

computations are equivalent and eliminating one.
 There are several types of redundancy elimination:

 Value numbering
 Associates symbolic values to computations and

identifies expressions that have the same value
 Common subexpression elimination
 Identifies expressions that have operands with the same

name
 Constant/Copy propagation
 Identifies variables that have constant/copy values and

uses the constants/copies in place of the variables.
 Partial redundancy elimination
 Inserts computations in paths to convert partial

redundancy to full redundancy.
10

Optimizing Transformations

 Compile time evaluation
 Common sub-expression elimination
 Code motion
 Strength Reduction
 Dead code elimination
 Copy propagation
 Loop optimization

 Induction variables and strength reduction

11

Compile-Time Evaluation
 Expressions whose values can be pre-computed at

the compilation time
 Two ways:
 Constant folding
 Constant propagation

12

Compile-Time Evaluation
 Constant folding: Evaluation of an expression with

constant operands to replace the expression with
single value

 Example:
area := (22.0/7.0) * r ** 2

area := 3.14286 * r ** 2

13

Compile-Time Evaluation
 Constant Propagation: Replace a variable with

constant which has been assigned to it earlier.
 Example:

pi := 3.14286

area = pi * r ** 2

area = 3.14286 * r ** 2

14

Constant Propagation
 What does it mean?

 Given an assignment x = c, where c is a constant,
replace later uses of x with uses of c, provided there are
no intervening assignments to x.
 Similar to copy propagation
 Extra feature: It can analyze constant-value

conditionals to determine whether a branch should
be executed or not.

 When is it performed?
 Early in the optimization process.

 What is the result?
 Smaller code
 Fewer registers

15

Common Sub-expression Evaluation
 Identify common sub-expression present in

different expression, compute once, and use the
result in all the places.
 The definition of the variables involved should not

change

Example:
a := b * c temp := b * c
… a := temp
… …
x := b * c + 5 x := temp + 5

16

Common Subexpression Elimination
 Local common subexpression elimination

 Performed within basic blocks
 Algorithm sketch:
 Traverse BB from top to bottom
 Maintain table of expressions evaluated so far

 if any operand of the expression is redefined, remove it
from the table

 Modify applicable instructions as you go
 generate temporary variable, store the expression in it

and use the variable next time the expression is
encountered.

17

x = a + b
...
y = a + b

t = a + b
x = t
...
y = t

Common Subexpression Elimination

18

c = a + b
d = m * n
e = b + d
f = a + b
g = - b
h = b + a
a = j + a
k = m * n
j = b + d
a = - b
if m * n go to L

t1 = a + b
c = t1
t2 = m * n
d = t2
t3 = b + d
e = t3
f = t1
g = -b
h = t1 /* commutative */
a = j + a
k = t2
j = t3
a = -b
if t2 go to L

the table contains quintuples:
(pos, opd1, opr, opd2, tmp)

Common Subexpression Elimination

 Global common subexpression elimination
 Performed on flow graph
 Requires available expression information
 In addition to finding what expressions are available

at the endpoints of basic blocks, we need to know
where each of those expressions was most recently
evaluated (which block and which position within
that block).

19

Common Sub-expression Evaluation

20

z : = a + b + 10

a : = b

1

2 3

4

“a + b” is not a
common sub-
expression in 1 and 4

None of the variable involved should be modified in any path

x : = a + b

